首页 > 其他 > 详细

在FASHION-MNIST上训练CNN

时间:2020-04-02 19:48:08      阅读:72      评论:0      收藏:0      [点我收藏+]

案例源码链接 http://studyai.com/pytorch-1.2/beginner/fanshionmnist_tutorial.html

PyTorch环境配置Pycharm使用参考我博客。

1、打开PyCharm,创建项目,新建python文件,hello.py

从上到下依次粘贴链接的代码,注意修改如下:

① 添加代码,其后的所有代码必须缩进  if __name__ == "__main__":

② transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

改为

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

因为处理的是单通道的灰度图,而不是三通道。为什么是这两个数,点击参考?

2、下载FASHION-MNIST数据,放到项目目录..\PycharmProjects\untitled4\data\fashiomnist\FashionMNIST\raw,运行程序会自动解压的。

技术分享图片技术分享图片

 3、运行程序

【全部程序如下】

import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms

print("PyTorch Version: ", torch.__version__)
print("Torchvision Version: ", torchvision.__version__)

# 忽略 warnings
import warnings
warnings.filterwarnings("ignore")

if __name__ == "__main__":

    ############################### 1 使用 torchvision 加载和规范训练和测试数据集

    batch_size = 16

    #transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

    trainset = torchvision.datasets.FashionMNIST(root=./data/fashiomnist, train=True, download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)

    testset = torchvision.datasets.FashionMNIST(root=./data/fashiomnist, train=False, download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)

    classes = (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

    print("训练集大小:", len(trainloader) * batch_size)
    print("测试集大小:", len(testloader) * batch_size)


    ########################################## 展示训练集中的图片
    # 用于显示一张图像的函数
    def imshow(img):
        img = img / 2 + 0.5  # 去归一化
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))


    # 获取一个批次的图像,一次迭代取出batch_size张图片
    dataiter = iter(trainloader)
    images, labels = dataiter.next()

    # 显示一个批次的图像
    imshow(torchvision.utils.make_grid(images))
    # 输出 对应批次图像的标签
    print( .join(%5s % classes[labels[j]] for j in range(batch_size)))

    ######################################## 定义网络模型
    import torch.nn as nn
    import torch.nn.functional as F


    class Net1(nn.Module):
        def __init__(self):
            super(Net1, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
            self.bn = nn.BatchNorm2d(20)

        def forward(self, x):
            x = F.max_pool2d(self.conv1(x), 2)
            x = F.relu(x) + F.relu(-x)
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = self.bn(x)
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            x = F.softmax(x, dim=1)
            return x


    class Net2(nn.Module):
        def __init__(self):
            super(Net2, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)

        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            x = F.log_softmax(x, dim=1)
            return x


    class Net3(nn.Module):
        """ Simple network"""

        def __init__(self):
            super().__init__()
            self.features = nn.Sequential(
                nn.Conv2d(1, 32, kernel_size=3, padding=1),  # 28
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2, stride=2),  # 14

                nn.Conv2d(32, 64, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2, stride=2)  # 7
            )
            self.classifier = nn.Sequential(
                nn.Dropout(),
                nn.Linear(64 * 7 * 7, 128),
                nn.ReLU(inplace=True),
                nn.Linear(128, 10)
            )

        def forward(self, x):
            x = self.features(x)
            x = x.view(x.size(0), 64 * 7 * 7)
            x = self.classifier(x)
            return x

    ################################### 将模型写入文件并用TensorBoard查看
    from tensorboardX import SummaryWriter

    # 无意义输入,与MNIST的一个batch数据的shape相同
    dummy_input = torch.autograd.Variable(torch.rand(batch_size, 1, 28, 28))

    model1 = Net1()
    print(model1)
    with SummaryWriter(comment=_fashionmnist_net1) as w:
        w.add_graph(model1, (dummy_input,))

    model2 = Net2()
    print(model2)
    with SummaryWriter(comment=_fashionmnist_net2) as w:
        w.add_graph(model2, (dummy_input,))

    model3 = Net3()
    print(model3)
    with SummaryWriter(comment=_fashionmnist_net3) as w:
        w.add_graph(model3, (dummy_input,))

    ################################## 定义损失函数和优化器
    import torch.optim as optim

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)

    # 选择上面定义的任意一个模型 model1,model2,model3,...
    net = model3.to(device)  # or = model2

    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    writer = SummaryWriter(comment=_fashionmnist_logs)

    ########################################################### 计算初始网络的准确率
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print(Accuracy of the network on the 10000 test images: %d %% % (100 * correct / total))

    ##开始训练
    num_epochs = 10
    num_batches = len(trainloader)
    for epoch in range(num_epochs):
        running_loss = 0.0
        for step, data in enumerate(trainloader):
            n_iter = epoch * num_batches + step
            images, labels = data[0].to(device), data[1].to(device)
            # 将梯度清零
            optimizer.zero_grad()
            # 向前传递
            out = net(images)
            # 计算损失
            loss_value = loss(out, labels)
            # 向后传递
            loss_value.backward()
            # 优化
            optimizer.step()
            # 记录日志
            writer.add_scalar(loss, loss_value.item(), n_iter)
            running_loss += loss_value.item()

            if step % 500 == 499:  # 每 500 个 mini-batches 就输出一次训练信息
                print([%d, %5d] loss: %.3f % (epoch + 1, step + 1, running_loss / 500))
                running_loss = 0.0

    writer.close()
    print(Finished Training)

    ############################################################ 开始测试
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print(Accuracy of the network on the 10000 test images: %d %% % (100 * correct / total))

    ############################################################ 展示每个样本上的准确率
    num_classes = len(classes)
    class_correct = list(0. for i in range(num_classes))
    class_total = list(0. for i in range(num_classes))
    with torch.no_grad():
        for data in testloader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs, 1)
            c = (predicted == labels).squeeze()
            for i in range(batch_size):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1

    for i in range(num_classes):
        print(Accuracy of %5s : %2d %% % (classes[i], 100 * class_correct[i] / class_total[i]))

    ############################################ 展示测试样本、真实标签和测试标签
    dataiter = iter(testloader)
    images, labels = dataiter.next()

    # print images
    imshow(torchvision.utils.make_grid(images))
    print(GroundTruth: ,  .join(%5s % classes[labels[j]] for j in range(batch_size)))

    outputs = net(images.to(device))
    _, predicted = torch.max(outputs, 1)

    print(Predicted: ,  .join(%5s % classes[predicted[j]] for j in range(batch_size)))

 

在FASHION-MNIST上训练CNN

原文:https://www.cnblogs.com/xixixing/p/12622256.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!