首先,您需要在spark类路径上包含特定数据库的JDBC驱动程序。
例如,要从Spark Shell连接到postgres,您可以运行以下命令:
bin/spark-shell --driver-class-path postgresql-9.4.1207.jar --jars postgresql-9.4.1207.jar
def jdbc(url: String, table: String, properties: Properties): DataFrame
例子:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = spark.read.jdbc(url,tableName,prop)
// 一些操作
jdbcDF.write.mode..
查看并发度
jdbcDF.rdd.partitions.size # 结果返回 1
该操作的并发度为1,你所有的数据都会在一个partition中进行操作,意味着无论你给的资源有多少,只有一个task会执行任务,执行效率可想而之,并且在稍微大点的表中进行操作分分钟就会OOM。
更直观的说法是,达到千万级别的表就不要使用该操作,count操作就要等一万年,亲测4个小时 !
def jdbc(
url: String,
table: String,
columnName: String, # 根据该字段分区,需要为整形,比如id等
lowerBound: Long, # 分区的下界
upperBound: Long, # 分区的上界
numPartitions: Int, # 分区的个数
connectionProperties: Properties): DataFrame
例子:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
val columnName = "colName"
val lowerBound = 1,
val upperBound = 10000000,
val numPartitions = 10,
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = spark.read.jdbc(url,tableName,columnName,lowerBound,upperBound,numPartitions,prop)
// 一些操作
....
查看并发度
jdbcDF.rdd.partitions.size # 结果返回 10
该操作将字段 colName 中1-10000000条数据分到10个partition中,使用很方便,缺点也很明显,只能使用整形数据字段作为分区关键字。
jdbc(
url: String,
table: String,
predicates: Array[String],
connectionProperties: Properties): DataFrame
例子:
val url = "jdbc:mysql://localhost:3306/db"
val tableName = "tablename"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","mysql")
prop.setProperty("password","123456")
val predicates =
Array(
"2018-10-01" -> "2018-11-01",
"2018-11-02" -> "2018-12-01",
"2018-12-02" -> "2019-01-01",
"2019-02-02" -> "2019-03-01",
"2019-03-02" -> "2019-04-01",
"2019-04-02" -> "2019-05-01",
"2019-05-02" -> "2019-06-01",
"2019-06-02" -> "2019-07-01",
"2019-07-02" -> "2019-08-01",
"2019-08-02" -> "2019-09-01",
"2019-09-02" -> "2019-10-01",
"2019-10-02" -> "2019-11-01"
).map {
case (start, end) =>
s"cast(txntime as date) >= date ‘$start‘ " + s"AND cast(txntime as date) <= date ‘$end‘"
}
// 取得该表数据
val jdbcDF = spark.read.jdbc(url, tableName, predicates, prop)
// 写入到hive表
jdbcDF.write.partitionBy().mode("overwrite").format("orc")
.saveAsTable("db.tableName")
一千万级别数据实测2.4min左右导入完成。
limit分页分区
依旧采用上述函数,但是partitions做了修改,例子:
val url = "jdbc:mysql://localhost:3306/db"
val tableName = "tablename"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","mysql")
prop.setProperty("password","123456")
def getPartition(count:Int) = {
val step = count / 10
Range(0, count, step).map(x =>{
(x, step)
}).toArray
}
val partitions = getPartition(10000000)
.map {
case (start,end) => s"1=1 limit ${start},${end}"
}
// 取得该表数据
val jdbcDF = spark.read.jdbc(url, tableName, partitions, prop)
// 写入到hive表
jdbcDF.write.partitionBy().mode("overwrite").format("orc")
.saveAsTable("db.tableName")
实际测试效果和上面的差不多,区别是这里不需要字段有特殊的要求,对行数做处理就行啦。
原文:https://www.cnblogs.com/Kaivenblog/p/12622008.html