一、工具准备
1、7台虚拟机(至少需要3台),本次搭建以7台为例,配好ip,关闭防火墙,修改主机名和IP的映射关系(/etc/hosts),关闭防火墙
2、安装JDK,配置环境变量
二、集群规划:
集群规划(7台):
主机名 IP 安装的软件 运行的进程
hadoop01 192.168.*.121 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
hadoop02 192.168.*.122 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
hadoop03 192.168.*.123 jdk、hadoop ResourceManager
hadoop04 192.168.*.124 jdk、hadoop ResourceManager
hadoop05 192.168.*.125 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
hadoop06 192.168.*.126 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
hadoop07 192.168.*.127 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
三台集群的集群规划:
主机名 IP 安装的软件 运行的进程
hadoop01 192.168.*.201 jdk、hadoop NameNode、DFSZKFailoverController(zkfc) JournalNode、QuorumPeerMain(zookeeper)
hadoop02 192.168.*.202 jdk、hadoop NameNode、DFSZKFailoverController(zkfc) JournalNode、QuorumPeerMain(zookeeper)
hadoop03 192.168.*.203 jdk、hadoop DataNode JournalNode、QuorumPeerMain(zookeeper)
三、安装步骤
1、配置zookeeper集群(hadoop05上)
1.1解压
tar -zxvf zookeeper.tar.gz -C /hadoop/
1.2修改配置
cd /hadoop/zookeeper/conf/ cp zoo_sample.cfg zoo.cfg vim zoo.cfg # 修改:dataDir=/home/app/hadoop/zookeeper/data # 在最后添加: server.1=hadoop05:2888:3888 server.2=hadoop06:2888:3888 server.3=hadoop07:2888:3888 # 保存退出 # 然后创建一个tmp文件夹 mkdir /hadoop/zookeeper/tmp # 再创建一个空文件 touch /hadoop/zookeeper/tmp/myid # 最后向该文件写入ID echo 1 > /hadoop/zookeeper/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在hadoop06、hadoop07根目录下创建一个hadoop目录:mkdir /hadoop)
scp -r /hadoop/zookeeper/ hadoop06:/hadoop/ scp -r /hadoop/zookeeper/ hadoop07:/hadoop/ # 注意:修改hadoop06、hadoop07对应/hadoop/zookeeper/tmp/myid内容 # hadoop06: echo 2 > /hadoop/zookeeper/tmp/myid # hadoop07: echo 3 > /hadoop/zookeeper/tmp/myid
2.安装配置hadoop集群(在hadoop01上操作)(hadoop用的是3.2.1版本)
2.1解压
tar -zxvf hadoop-3.2.1.tar.gz -C /hadoop/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中 vi /etc/profile export JAVA_HOME=/usr/java/jdk1.8 export HADOOP_HOME=/hadoop/hadoop-3.2.1 export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下 cd /home/hadoop/app/hadoop-3.2.1/etc/hadoop
2.2.1修改hadoo-env.sh
export JAVA_HOME=/home/hadoop/app/jdk1.7.0_55
2.2.2修改core-site.xml
<configuration> <!-- 指定hdfs的nameservice为ns1 --> <property> <name>fs.defaultFS</name> <value>hdfs://ns1</value> </property> <!-- 指定hadoop临时目录 --> <property> <name>hadoop.tmp.dir</name> <value>/home/hadoop/app/hadoop-3.2.1/tmp</value> </property> <!-- 指定zookeeper地址 --> <property> <name>ha.zookeeper.quorum</name> <value>hadoop05:2181,hadoop06:2181,hadoop07:2181</value> </property> </configuration>
2.2.3修改hdfs-site.xml
<configuration> <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>ns1</value> </property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 --> <property> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>hadoop01:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn1</name> <value>hadoop01:9870</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>hadoop02:9000</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn2</name> <value>hadoop02:9870</value> </property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://hadoop05:8485;hadoop06:8485;hadoop07:8485/ns1</value> </property> <!-- 指定JournalNode在本地磁盘存放数据的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/home/hadoop/app/hadoop-3.2.1/journaldata</value> </property> <!-- 开启NameNode失败自动切换 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失败自动切换实现方式 --> <property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--> <property> <name>dfs.ha.fencing.methods</name> <value> sshfence shell(/bin/true) </value> </property> <!-- 使用sshfence隔离机制时需要ssh免登陆 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> <!-- 配置sshfence隔离机制超时时间 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property> </configuration>
2.2.4修改mapred-site.xml
<configuration> <!-- 指定mr框架为yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>
2.2.5修改yarn-site.xml
<configuration> <!-- 开启RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分别指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>hadoop03</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>hadoop04</value> </property> <!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>hadoop05:2181,hadoop06:2181,hadoop07:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>
2.2.6修改workers(workers是指定子节点的位置,因为要在hadoop01上启动HDFS、在hadoop03启动yarn,所以hadoop01上的workers文件指定的是datanode的位置,hadoop03上的workers文件指定的是nodemanager的位置)
2.*的版本是slaves
hadoop05
hadoop06
hadoop07
2.2.7配置免密码登陆
#首先要配置hadoop01到hadoop02、hadoop05、hadoop06、hadoop07的免密码登陆 workers#在hadoop01上生产一对钥匙 workersssh-keygen -t rsa workers#将公钥拷贝到其他节点,包括自己 workersssh-coyp-id hadoop01 workersssh-coyp-id hadoop02 workersssh-coyp-id hadoop05 workersssh-coyp-id hadoop06 workersssh-coyp-id hadoop07 workers#配置hadoop03到hadoop04、hadoop05、hadoop06、hadoop07的免密码登陆 workers#在hadoop03上生产一对钥匙 workersssh-keygen -t rsa workers#将公钥拷贝到其他节点 workersssh-coyp-id hadoop04 workersssh-coyp-id hadoop05 workersssh-coyp-id hadoop06 workersssh-coyp-id hadoop07 workers#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置hadoop02到hadoop01的免登陆 workers在hadoop02上生产一对钥匙 workersssh-keygen -t rsa workersssh-coyp-id -i hadoop01
2.4将配置好的hadoop拷贝到其他节点
scp -r /hadoop-3.2.1/ hadoop02:/home/hadoop/app/ scp -r /hadoop-3.2.1/ hadoop03:/home/hadoop/app/ scp -r /hadoop-3.2.1/ hadoop04:/home/hadoop/app/ scp -r /hadoop-3.2.1/ hadoop05:/home/hadoop/app/ scp -r /hadoop-3.2.1/ hadoop06:/home/hadoop/app/ scp -r /hadoop-3.2.1/ hadoop07:/home/hadoop/app/
###注意:接下来的步骤严格按照下面的步骤
2.5启动zookeeper集群(分别在hadoop05、hadoop06、hadoop07上启动zk)
cd /home/hadoop/app/zookeeper/bin/ ./zkServer.sh start #查看状态:一个leader,两个follower ./zkServer.sh status
2.6启动journalnode(分别在在hadoop05、hadoop06、hadoop07上执行)
cd /home/hadoop/app/hadoop-3.2.1 sbin/hdfs --daemon start journalnode #运行jps命令检验,hadoop05、hadoop06、hadoop07上多了JournalNode进程
2.7格式化HDFS
#在hadoop01上执行命令: hdfs namenode -format #格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/hadoop/hadoop-3.2.1/tmp,
# 然后将/hadoop/hadoop-3.2.1/tmp拷贝到hadoop02的/hadoop/hadoop-3.2.1/下。 scp -r tmp/ hadoop02:/home/hadoop/app/hadoop-3.2.1/ ##也可以这样,建议hdfs namenode -bootstrapStandby
2.8格式化ZKFC(在hadoop01上执行即可)
hdfs zkfc -formatZK
2.9启动HDFS(在hadoop01上执行)
sbin/start-dfs.sh
2.10启动YARN(#####注意#####:是在hadoop03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
2.11手动启动hadoop04的resoucemanager
sbin/yarn --daemon start resourcemanager
到此,hadoop-3.2.1配置完毕,可以统计浏览器访问:
http://192.168.*.201:9870
NameNode ‘hadoop01:9000‘ (active)
http://192.168.*.202:9870
NameNode ‘hadoop02:9000‘ (standby)
验证HDFS HA 首先向hdfs上传一个文件 hadoop fs -put /etc/profile /profile hadoop fs -ls / 然后再kill掉active的NameNode kill -9 <pid of NN> 通过浏览器访问:http://192.168.1.202:9870 NameNode ‘hadoop02:9000‘ (active) 这个时候hadoop02上的NameNode变成了active 在执行命令: hadoop fs -ls / -rw-r--r-- 3 root supergroup 1926 2014-02-06 15:36 /profile 刚才上传的文件依然存在!!! 手动启动那个挂掉的NameNode sbin/hadoop-daemon.sh start namenode 通过浏览器访问:http://192.168.1.201:9870 NameNode ‘hadoop01:9000‘ (standby) 验证YARN: 运行一下hadoop提供的demo中的WordCount程序: hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out OK,大功告成!!!
原文:https://www.cnblogs.com/syq816/p/12623864.html