原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/12644027.html,希望大家多多支持!!!
ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC、Sharding-Proxy和Sharding-Sidecar(计划中)这3款相互独立的产品组成。 他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、云原生等各种多样化的应用场景。详细一点的介绍直接看官网:https://shardingsphere.apache.org/document/current/cn/overview/
本章我们主要探讨如何集成ShardingJDBC, 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。特点如下:
<!--主要有以下依赖,分库分表策略直接在application.properties做相关配置即可-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>3.1.0.M1</version>
</dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-namespace</artifactId>
<version>3.1.0.M1</version>
</dependency>
//相关依赖
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>3.1.0</version>
</dependency>
<!--<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-transaction-2pc-xa</artifactId>
<version>3.1.0</version>
</dependency>-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-orchestration</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-orchestration-reg-zookeeper-curator</artifactId>
<version>3.1.0</version>
</dependency>
//数据源、分库分表总体配置
@Configuration
@MapperScan(basePackages = "com.bxl.dao.shardingDao", sqlSessionTemplateRef = "shardingSqlSessionTemplate")
public class ShardingDataSourceConfig {
private static final Logger logger = LoggerFactory.getLogger(ShardingDataSourceConfig.class);
//这里直接注入你项目中配置的数据源
@Resource
private DataSource dataSourceOne;
@Resource
private DataSource dataSourceTwo;
//注释掉的先不用看,后边会介绍
@Bean(name = "shardingDataSource")
public DataSource dataSource() throws SQLException {
TransactionTypeHolder.set(TransactionType.LOCAL);
//1、指定需要分库分表的数据源
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("ds0", dataSourceOne);
dataSourceMap.put("ds1",dataSourceTwo);
//2、分库分表配置
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
//2.1、配置默认自增主键生成器
shardingRuleConfig.setDefaultKeyGenerator(new DefaultKeyGenerator());
//2.2、配置各个表的分库分表策略,这里只配了一张表的就是t_order
shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration());
//2.3、配置绑定表规则列表,级联绑定表代表一组表,这组表的逻辑表与实际表之间的映射关系是相同的
// shardingRuleConfig.getBindingTableGroups().add("t_order","t_order_item");
//2.4、配置广播表规则列表,利用广播小表提高性能
// shardingRuleConfig.getBroadcastTables().add("t_config");
//2.5、配置默认分表规则
shardingRuleConfig.setDefaultTableShardingStrategyConfig(new NoneShardingStrategyConfiguration());
//2.6、配置默认分库规则(不配置分库规则,则只采用分表规则)
shardingRuleConfig.setDefaultDatabaseShardingStrategyConfig(new NoneShardingStrategyConfiguration());
//2.7、配置默认数据源
shardingRuleConfig.setDefaultDataSourceName("ds0");
//2.8、配置读写分离规则
// shardingRuleConfig.setMasterSlaveRuleConfigs();
//3、属性配置项,可以为以下属性
Properties propertie = new Properties();
//是否打印SQL解析和改写日志
propertie.setProperty("sql.show",Boolean.TRUE.toString());
//用于SQL执行的工作线程数量,为零则表示无限制
propertie.setProperty("executor.size","4");
//每个物理数据库为每次查询分配的最大连接数量
propertie.setProperty("max.connections.size.per.query","1");
//是否在启动时检查分表元数据一致性
propertie.setProperty("check.table.metadata.enabled","false");
//4、用户自定义属性
Map<String, Object> configMap = new HashMap<>();
configMap.put("effect","分库分表");
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,configMap,propertie);
//5、数据治理
//5.1、配置注册中心
// RegistryCenterConfiguration regConfig = new RegistryCenterConfiguration();
// regConfig.setServerLists("localhost:2181");
// regConfig.setNamespace("sharding-sphere-orchestration");
//regConfig.setDigest("data-centre");
//5.2、配置数据治理
// OrchestrationConfiguration orchConfig = new OrchestrationConfiguration("orchestration-sharding-data-source", regConfig, true);
//5.3、获取数据源对象
// DataSource dataSource = OrchestrationShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, configMap, propertie, orchConfig);
return dataSource;
}
@Bean(name = "shardingSqlSessionFactory")
public SqlSessionFactory sqlSessionFactorySharding(@Qualifier("shardingDataSource") DataSource dataSource) throws Exception {
SqlSessionFactoryBean bean = new SqlSessionFactoryBean();
bean.setDataSource(dataSource);
bean.setConfigLocation(new PathMatchingResourcePatternResolver().getResource("classpath:mybatis/mybatis-config.xml"));
bean.setMapperLocations(new PathMatchingResourcePatternResolver().getResources("classpath:mybatis/mapper/shardingMapper/**/*.xml"));
return bean.getObject();
}
//本地事务
@Bean(name = "shardingTransactionManagerLOCAL")
public PlatformTransactionManager transactionManagerLocal(@Qualifier("shardingDataSource") DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
}
//XA事务
// @Bean(name = "shardingTransactionManagerXA")
// public ShardingTransactionManager transactionManagerXA(@Qualifier("shardingDataSource") DataSource dataSource) {
// return new AtomikosTransactionManager();
// }
@Bean(name = "shardingSqlSessionTemplate")
public SqlSessionTemplate sqlSessionTemplateThree(@Qualifier("shardingSqlSessionFactory") SqlSessionFactory sqlSessionFactory) throws Exception {
return new SqlSessionTemplate(sqlSessionFactory);
}
/**
* Sharding提供了5种分片策略:
* StandardShardingStrategyConfiguration:标准分片策略, 提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持
* ComplexShardingStrategyConfiguration:复合分片策略, 提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。
* InlineShardingStrategyConfiguration:Inline表达式分片策略, 使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持
* HintShardingStrategyConfiguration:通过Hint而非SQL解析的方式分片的策略
* NoneShardingStrategyConfiguration:不分片的策略
* Sharding提供了以下4种算法接口:
* PreciseShardingAlgorithm
* RangeShardingAlgorithm
* HintShardingAlgorithm
* ComplexKeysShardingAlgorithm
* @return
*/
TableRuleConfiguration getOrderTableRuleConfiguration() {
TableRuleConfiguration result = new TableRuleConfiguration();
//1、指定逻辑索引(oracle/PostgreSQL需要配置)
// result.setLogicIndex("order_id");
//2、指定逻辑表名
result.setLogicTable("t_order");
//3、指定映射的实际表名
result.setActualDataNodes("ds${0..1}.t_order_${0..1}");
//4、配置分库策略,缺省表示使用默认分库策略
result.setDatabaseShardingStrategyConfig(new InlineShardingStrategyConfiguration("user_id","ds${user_id % 2}"));
//result.setDatabaseShardingStrategyConfig(new HintShardingStrategyConfiguration(new OrderDataBaseHintShardingAlgorithm()));
//5、配置分表策略,缺省表示使用默认分表策略
result.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "t_order_${order_id % 2}"));
//result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("order_id",new orderPreciseShardingAlgorithm(),new orderRangeShardingAlgorithm()));
//result.setTableShardingStrategyConfig(new ComplexShardingStrategyConfiguration("order_id,user_id",new orderComplexKeysShardingAlgorithm()));
//result.setTableShardingStrategyConfig(new HintShardingStrategyConfiguration(new OrderTableHintShardingAlgorithm()));
//6、指定自增字段以及key的生成方式
result.setKeyGeneratorColumnName("order_id");
result.setKeyGenerator(new DefaultKeyGenerator());
return result;
}
//PreciseShardingAlgorithm接口实现(用于处理 = 和 in 的路由)
class orderPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
logger.info("collection:" + JSON.toJSONString(collection) + ",preciseShardingValue:" + JSON.toJSONString(preciseShardingValue));
for (String name : collection) {
if (name.endsWith(preciseShardingValue.getValue() % collection.size() + "")) {
logger.info("return name:"+name);
return name;
}
}
return null;
}
}
//RangeShardingAlgorithm接口实现(用于处理BETWEEN AND分片),这里的核心是找出这个范围的数据分布在那些表(库)中
class orderRangeShardingAlgorithm implements RangeShardingAlgorithm<Long> {
@Override
public Collection<String> doSharding(Collection<String> collection, RangeShardingValue<Long> rangeShardingValue) {
logger.info("Range collection:" + JSON.toJSONString(collection) + ",rangeShardingValue:" + JSON.toJSONString(rangeShardingValue));
Collection<String> collect = new ArrayList<>();
Range<Long> valueRange = rangeShardingValue.getValueRange();
for (Long i = valueRange.lowerEndpoint(); i <= valueRange.upperEndpoint(); i++) {
for (String each : collection) {
if (each.endsWith(i % collection.size() + "")) {
collect.add(each);
}
}
}
return collect;
}
}
//ComplexShardingStrategy支持多分片键
class orderComplexKeysShardingAlgorithm implements ComplexKeysShardingAlgorithm{
@Override
public Collection<String> doSharding(Collection<String> collection, Collection<ShardingValue> shardingValues) {
logger.info("collection:" + JSON.toJSONString(collection) + ",shardingValues:" + JSON.toJSONString(shardingValues));
Collection<Long> orderIdValues = getShardingValue(shardingValues, "order_id");
Collection<Long> userIdValues = getShardingValue(shardingValues, "user_id");
List<String> shardingSuffix = new ArrayList<>();
/**例如:根据 user_id + order_id 双分片键来进行分表*/
//Set<List<Integer>> valueResult = Sets.cartesianProduct(userIdValues, orderIdValues);
for (Long userIdVal : userIdValues) {
for (Long orderIdVal : orderIdValues) {
String suffix = userIdVal % 2 + "_" + orderIdVal % 2;
collection.forEach(x -> {
if (x.endsWith(suffix)) {
shardingSuffix.add(x);
}
});
}
}
return shardingSuffix;
}
private Collection<Long> getShardingValue(Collection<ShardingValue> shardingValues, final String key) {
Collection<Long> valueSet = new ArrayList<>();
Iterator<ShardingValue> iterator = shardingValues.iterator();
while (iterator.hasNext()) {
ShardingValue next = iterator.next();
if (next instanceof ListShardingValue) {
ListShardingValue value = (ListShardingValue) next;
/**例如:根据user_id + order_id 双分片键来进行分表*/
if (value.getColumnName().equals(key)) {
return value.getValues();
}
}
}
return valueSet;
}
}
//表的强制分片策略
class OrderTableHintShardingAlgorithm implements HintShardingAlgorithm {
@Override
public Collection<String> doSharding(Collection<String> collection, ShardingValue shardingValue) {
logger.info("collection:" + JSON.toJSONString(collection) + ",shardingValues:" + JSON.toJSONString(shardingValue));
Collection<String> result = new ArrayList<>();
String logicTableName = shardingValue.getLogicTableName();
ListShardingValue<Integer> listShardingValue = (ListShardingValue<Integer>) shardingValue;
List<Integer> list = Lists.newArrayList(listShardingValue.getValues());
String res = logicTableName + "_" + list.get(0);
result.add(res);
return result;
}
}
//库的强制分片策略
class OrderDataBaseHintShardingAlgorithm implements HintShardingAlgorithm {
@Override
public Collection<String> doSharding(Collection<String> collection, ShardingValue shardingValue) {
logger.info("collection:" + JSON.toJSONString(collection) + ",shardingValues:" + JSON.toJSONString(shardingValue));
Collection<String> result = new ArrayList<>();
ListShardingValue<Integer> listShardingValue = (ListShardingValue<Integer>) shardingValue;
List<Integer> list = Lists.newArrayList(listShardingValue.getValues());
for (String db : collection) {
if (db.endsWith(list.get(0).toString())) {
result.add(db);
}
}
return result;
}
}
//分布式唯一主键
@Bean("myKeyGenerator")
public KeyGenerator keyGenerator() {
return new DefaultKeyGenerator();
}
}
以上就是springboot基于mybatis整合ShardingJdbc的基本配置,其中就是关于t_order
表的分库分表最简单的一个配置,使用和平常一样。关于mybatis的配置就不多说了,我简单粘一下我的dao层和xml。只需要注意一点就是我们在写sql的时候,表明使用的是逻辑表明,像这里就是使用的t_order
,而实际在我的库里存的是t_order_0
,t_order_1
//编写我们的dao层接口,具体对应的对应的sql写在xml中
@Repository
public interface OrderDao {
void saveToOne(Order order);
List<Order> findAllData();
List<Order> findByIds(List<Long> list);
List<Order> findByBetween(Map<String, Object> map);
List<Order> findByOrderIdAndUserId(Map<String, Object> param);
void updateByOrderIds(Map<String, Object> map);
void deleteByOrderIds(long[] longs);
}
//对应的OrderMapper.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.bxl.dao.shardingDao.OrderDao" >
<insert id="saveToOne" parameterType="com.bxl.entity.Order" useGeneratedKeys="true" keyProperty="orderId">
insert into t_order(`order_id`, `user_id`)
values (#{orderId}, #{userId})
</insert>
<select id="findAllData" resultType="com.bxl.entity.Order">
SELECT
`order_id` orderId,
`user_id` userId
FROM t_order
</select>
<select id="findByIds" resultType="com.bxl.entity.Order" parameterType="java.lang.Long">
SELECT
`order_id` orderId,
`user_id` userId
FROM t_order where order_id in
<foreach collection="list" item="item" index="index" open="(" separator="," close=")">
#{item}
</foreach>
</select>
<select id="findByBetween" resultType="com.bxl.entity.Order" parameterType="java.util.Map">
SELECT
`order_id` orderId,
`user_id` userId
FROM t_order where order_id BETWEEN #{start} AND #{end}
</select>
<select id="findByOrderIdAndUserId" resultType="com.bxl.entity.Order" parameterType="java.util.Map">
SELECT
`order_id` orderId,
`user_id` userId
FROM t_order where order_id = #{orderId} and user_id = #{userId}
</select>
<update id="updateByOrderIds" parameterType="java.util.Map">
update t_order set user_id=#{userId} where order_id in
<foreach collection="orderIds" item="item" index="index" open="(" separator="," close=")" >
#{item}
</foreach>
</update>
<delete id="deleteByOrderIds" parameterType="java.lang.Long">
delete from t_order where order_id in
<foreach collection="array" item="item" index="index" open="(" separator="," close=")" >
#{item}
</foreach>
</delete>
</mapper>
//建表语句
CREATE TABLE `t_order_0` (
`order_id` bigint(20) NOT NULL,
`user_id` bigint(20) NOT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin
这个简单的样例我们是基于InlineShardingStrategyConfiguration分片策略来做的,它可以通过使用Groovy的Inline表达式来配置自己的分片策略,提供对SQL语句中的=和IN的分片操作支持,但不支持between,但可以转化为>、<来完成类似的查询。
分片策略包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键 + 分片算法,也就是分片策略。目前提供5种分片策略。
分片键用于分片的数据库字段,是将数据库(表)水平拆分的关键字段。例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段。 SQL中如果无分片字段,将执行全路由,性能较差。 除了对单分片字段的支持,ShardingSphere也支持根据多个字段进行分片。
分片算法支持通过=、>=、<=、>、<、BETWEEN和IN分片。分片算法需要应用方开发者自行实现,可实现的灵活度非常高。目前提供4种分片算法。由于分片算法和业务实现紧密相关,因此并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。四种算法接口如下:
具体的使用特点及注意事项:
使用Inline表达式分片策略,使用相对简单的Groovy表达式就可以实现分片功能,但适合一些分片简单的场景,而且这种方式不支持between...and...的查询方式。
使用标准分片策略(常用方式),需要我们自己实现两个分片算法,即PreciseShardingAlgorithm和RangeShardingAlgorithm,这种方式就比较灵活多了,而且支持between...and...的查询方式。
使用复合分片策略,需要自己实现ComplexKeysShardingAlgorithm复合分片算法,这种方式一般用于处理使用多键作为分片键进行分片的场景。
通过强制(Hint)分片的策略,主要是为了应对分片字段不存在SQL中、数据库表结构中,而存在于外部业务逻辑,或者是为了强制在主库进行某些数据操作。这块的代码编写有点特殊:
//首先配置实现自己的强制分片算法,包括库和表,具体看上边代码
result.setDatabaseShardingStrategyConfig(new HintShardingStrategyConfiguration(new OrderDataBaseHintShardingAlgorithm()));
result.setTableShardingStrategyConfig(new HintShardingStrategyConfiguration(new OrderTableHintShardingAlgorithm()));
//业务层代码,其中分片的值可以不是当前表的字段,例如可以是系统缓存的用户id等等
public void addservice() {
//基于强制路由算法进行分库分表插入数据
for (int i = 0; i < 100; i++) {
//生成分布式主键,这里利用的就是snowflake算法生成
//order.setOrderId(KeyGenerator.generateKey().longValue());
Order order = new Order();
order.setOrderId((long)i+1);
int number = new Random().nextInt(500) + 1;
order.setUserId((long) number);
try (HintManager hintManager = HintManager.getInstance()) {
//添加数据源分片键值
hintManager.addDatabaseShardingValue("t_order", 1);
//添加表分片键值
hintManager.addTableShardingValue("t_order", 1);
orderDao.saveToOne(order);
} catch (Exception e){
System.out.println("插入数据发生异常!!!");
}
}
}
//查询业务
public List<Order> findAllDataByHint() {
List<Order> res = new ArrayList<>();
try (HintManager hintManager = HintManager.getInstance()) {
//分库不分表情况下,强制路由至某一个分库时,可使用hintManager.setDatabaseShardingValue方式添加分片。通过此方式添加分片键值后,将跳过SQL解析和改写阶段,从而提高整体执行效率。
//hintManager.setDatabaseShardingValue(1);
hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 1);
//使用hintManager.setMasterRouteOnly设置主库路由,强制读主库
//在配置了主从库时,那么我们的查询逻辑会落到从库上,但有些场景必须查主库,这是就需要强制走主库查询
hintManager.setMasterRouteOnly();
res = orderDao.findAllData();
}
return res;
}
//删除业务
public void deleteData() {
//强制路由下的删除操作
try (HintManager hintManager = HintManager.getInstance()) {
hintManager.addDatabaseShardingValue("t_order", 0);
hintManager.addTableShardingValue("t_order", 1);
orderDao.deleteAll();
}
}
注意:ShardingJdbc使用ThreadLocal管理分片键值进行Hint强制路由。可以通过编程的方式向HintManager中添加分片值,该分片值仅在当前线程内生效,所以需要在操作结束时调用hintManager.close()来清除ThreadLocal中的内容。由于hintManager实现了AutoCloseable接口,推荐使用try with resource自动关闭。
配置方式:
//在配置分库分表策略中添加如下配置,就表明将t_order和t_order_item进行了绑定
shardingRuleConfig.getBindingTableGroups().add("t_order", "t_order_item");
指分片规则一致的主表和子表。例如:t_order
表和t_order_item
表,均按照order_id
分片,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。举例说明,如果SQL为:
SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
在不配置绑定表关系时,假设分片键order_id
将数值10路由至第0片,将数值11路由至第1片,那么路由后的SQL应该为4条,它们呈现为笛卡尔积:
SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
在配置绑定表关系后,路由的SQL应该为2条:
SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
其中t_order在FROM的最左侧,ShardingSphere将会以它作为整个绑定表的主表。 所有路由计算将会只使用主表的策略,那么t_order_item
表的分片计算将会使用t_order
的条件。故绑定表之间的分区键要完全相同。
指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不大且需要与海量数据的表进行关联查询的场景,例如:字典表。
//配置如下;
shardingRuleConfig.getBroadcastTables().add("t_config");
既然涉及到分库分表,那么如何生成一个分布式主键,这里提供几种方式供大家参考:
路由至单数据节点:100%全兼容(目前仅MySQL,其他数据库完善中)。
路由至多数据节点:
由于ShardingSphere只能通过SQL字面提取用于分片的值,因此当分片键处于运算表达式或函数中时,ShardingSphere无法提前获取分片键位于数据库中的值,从而无法计算出真正的分片值。当出现此类分片键处于运算表达式或函数中的SQL时,ShardingSphere将采用全路由的形式获取结果。
分库分表就是为了解决由于数据量过大而导致数据库性能(IO瓶颈,CPU瓶颈)降低的问题,将原来独立的数据库拆分成若干数据库组成 ,将数据大表拆分成若干数据表组成,使得单一数据库、单一数据表的数据量变小,从而达到提升数据库性能的目的。
分区表
垂直分库
垂直分表(将一张表拆成多张表)
水平分库
水平分表
个人博客地址:
cnblogs:https://www.cnblogs.com/baixianlong
github:https://github.com/xianlongbai
原文:https://www.cnblogs.com/baixianlong/p/12644027.html