首页 > 移动平台 > 详细

《A Generative Appearance Model for End-to-end Video Object Segmentation》

时间:2020-04-07 01:51:18      阅读:149      评论:0      收藏:0      [点我收藏+]

 技术分享图片

GAM算法的pipeline如图3-8所示,Feature Extractor用于提取特征,Mask-propagation Module机制和RGMP类似,融合第一帧信息(RGB图和分割图在通道拼接的输出)和前一帧的分割结果图以及当前帧的特征。为了在解码输入中加入区分前景和背景的强约束信息,文中还设计了一个基于外观的生成模型Appearance Module,它利用多元高斯模型建模并结合EM算法[50]进行参数学习,模型输出图像中每个点的后验类别概率,然后与Mask-propagation Module输出在通道上拼接后输入进Fusion Module中生成粗粒度的分割预测(该结果还需反馈给Mask-propagation Module和Appearance Module用于下一帧的处理)并结合初级特征在Upsampling Module中进行进一步细化,最后通过predictor输出分割结果图。

 技术分享图片

《A Generative Appearance Model for End-to-end Video Object Segmentation》

原文:https://www.cnblogs.com/zf-blog/p/12650517.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!