继承是一种创建新类的方式,新建的类可称为子类或派生类,父类又可称为基类或超类,子类会遗传父类的属性
注意:python中支持多继承即一个子类可以继承多个父类
class Parent1(object):
x=1111
class Parent2(object):
pass
class Sub1(Parent1): # 单继承
pass
class Sub2(Parent1,Parent2): # 多继承
pass
print(Sub1.__bases__)
print(Sub2.__bases__)
print(Sub1.x)
# ps1: 在python2中有经典类与新式类之分
# 新式类:继承了object类的子类,以及该子类的子类的子类。。。
# 经典类:没有继承object类的子类,以及该子类的子类的子类。。。
# ps2:在python3中没有继承任何类,那么会默认继承object类,所以python3中所有的类都是新式类
print(Parent1.__bases__)
print(Parent2.__bases__)
# python的多继承
# 优点:子类可以同时遗传多个父类的属性,最大限度地重用代码
# 缺点:
# 1、违背人的思维习惯:继承表达的是一种什么"是"什么的关系
# 2、代码可读性会变差
# 3、不建议使用多继承,有可能会引发可恶的菱形问题,扩展性变差,
# 如果真的涉及到一个子类不可避免地要重用多个父类的属性,应该使用Mixins
# 示范1:类与类之间存在冗余问题
class Student:
school=‘OLDBOY‘
def __init__(self,name,age,sex):
self.name=name
self.age=age
self.sex=sex
def choose_course(self):
print(‘学生%s 正在选课‘ %self.name)
class Teacher:
school=‘OLDBOY‘
def __init__(self,name,age,sex,salary,level):
self.name=name
self.age=age
self.sex=sex
self.salary=salary
self.level=level
def score(self):
print(‘老师 %s 正在给学生打分‘ %self.name)
# 示范2:基于继承解决类与类之间的冗余问题
class OldboyPeople:
school = ‘OLDBOY‘
def __init__(self, name, age, sex):
self.name = name
self.age = age
self.sex = sex
class Student(OldboyPeople):
def __init__(self,name,age,sex,stu_id):
OldboyPeople.__init__(self,name,age,sex)
self.stu_id = stu_id
def choose_course(self):
print(‘学生%s 正在选课‘ % self.name)
stu_obj = Student(‘lili‘, 18, ‘female‘)
print(stu_obj.__dict__)
print(stu_obj.school)
stu_obj.choose_course()
class Teacher(OldboyPeople):
# 老师的空对象,‘egon‘,18,‘male‘,3000,10
def __init__(self, name, age, sex, salary, level):
# 指名道姓地跟父类OldboyPeople去要__init__
OldboyPeople.__init__(self,name,age, sex)
self.salary = salary
self.level = level
def score(self):
print(‘老师 %s 正在给学生打分‘ % self.name)
tea_obj=Teacher(‘egon‘,18,‘male‘,3000,10)
print(tea_obj.__dict__)
print(tea_obj.school)
tea_obj.score()
基于抽象的结果,我们就找到了继承关系
基于上图我们可以看出类与类之间的继承指的是什么’是’什么的关系
上述代代码中Student类与Teacher类都存在着重复的代码,student与teacher都是人类,所以得出继承关系
class OldboyPeople:
school = ‘OLDBOY‘
def __init__(self, name, age, sex):
self.name = name
self.age = age
self.sex = sex
class Student(OldboyPeople):
def __init__(self,name,age,sex,stu_id):
OldboyPeople.__init__(self,name,age,sex)
self.stu_id = stu_id
def choose_course(self):
print(‘学生%s 正在选课‘ % self.name)
class Teacher(OldboyPeople):
# 老师的空对象,‘egon‘,18,‘male‘,3000,10
def __init__(self, name, age, sex, salary, level):
# 指名道姓地跟父类OldboyPeople去要__init__
OldboyPeople.__init__(self,name,age, sex)
self.salary = salary
self.level = level
def score(self):
print(‘老师 %s 正在给学生打分‘ % self.name)
有了继承关系,对象在查找属性时,先从对象自己的__dict__
中找,如果没有则去子类中找,然后再去父类中找……
class Foo:
def f1(self):
print(‘Foo.f1‘)
def f2(self):
print(‘Foo.f2‘)
self.f1() # obj.f1()
class Bar(Foo):
def f1(self):
print(‘Bar.f1‘)
obj=Bar()
obj.f2()
# Foo.f2
# Bar.f1
‘‘‘
obj.f2()会在父类Foo中找到f2,先打印Foo.f2,然后执行到self.f1(),即obj.f1(),
仍会按照:对象本身->类Bar->父类Foo的顺序依次找下去,在类Bar中找到f1,因而打印结果为Bar.f1
‘‘‘
父类如果不想让子类覆盖自己的方法,可以采用双下划线开头的方式将方法设置为私有的
>>> class Foo:
... def __f1(self): # 变形为_Foo__fa
... print(‘Foo.f1‘)
... def f2(self):
... print(‘Foo.f2‘)
... self.__f1() # 变形为self._Foo__fa,因而只会调用自己所在的类中的方法
...
>>> class Bar(Foo):
... def __f1(self): # 变形为_Bar__f1
... print(‘Bar.f1‘)
...
>>>
>>> obj=Bar()
>>> obj.f2() #在父类中找到f2方法,进而调用obj._Foo__f1()方法,同样是在父类中找到该方法
Foo.f2
Foo.f1
因为python中支持多继承,一个子类是可以同时继承多个父类的,这固然可以带来一个子类可以对多个不同父类加以重用的好处,但是这也带来了菱形问题(或称钻石问题,有时候也被称为“死亡钻石”)
这种继承结构下导致的问题称之为菱形问题:如果A中有一个方法,B和/或C都重写了该方法,而D没有重写它,那么D继承的是哪个版本的方法:B的还是C的?如下所示
class A(object):
def test(self):
print(‘from A‘)
class B(A):
def test(self):
print(‘from B‘)
class C(A):
def test(self):
print(‘from C‘)
class D(B,C):
pass
obj = D()
obj.test() # 结果为:from B
# 要想搞明白obj.test()是如何找到方法test的,需要了解python的继承实现原理
针对python到底是如何实现继承的,每当我们定义一个类,python就会计算出一个方法解析顺序列表即MRO列表我们可以使用mro()
这个内置方法查看MRO列表的内容
print(D.mro())
[<class ‘__main__.D‘>, <class ‘__main__.B‘>, <class ‘__main__.C‘>, <class ‘__main__.A‘>, <class ‘object‘>]
# 合并父类MRO列表遵循的三个准则
‘‘‘
1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类
‘‘‘
# 1.由对象发起的属性查找,会从对象自身的属性里检索,没有则会按照对象的类.mro()规定的顺序依次找下去,
# 2.由类发起的属性查找,会按照当前类.mro()规定的顺序依次找下去,
非菱形结构
class E:
def test(self):
print(‘from E‘)
class F:
def test(self):
print(‘from F‘)
class B(E):
def test(self):
print(‘from B‘)
class C(F):
def test(self):
print(‘from C‘)
class D:
def test(self):
print(‘from D‘)
class A(B, C, D):
# def test(self):
# print(‘from A‘)
pass
print(A.mro())
‘‘‘
[<class ‘__main__.A‘>, <class ‘__main__.B‘>, <class ‘__main__.E‘>, <class ‘__main__.C‘>, <class ‘__main__.F‘>, <class ‘__main__.D‘>, <class ‘object‘>]
‘‘‘
obj = A()
obj.test() # 结果为:from B
# 可依次注释上述类中的方法test来进行验证
菱形结构,经典类与新式类会有不同MRO,分别对应属性的两种查找方式
经典类:深度优先
class G: # 在python2中,未继承object的类及其子类,都是经典类
def test(self):
print(‘from G‘)
class E(G):
def test(self):
print(‘from E‘)
class F(G):
def test(self):
print(‘from F‘)
class B(E):
def test(self):
print(‘from B‘)
class C(F):
def test(self):
print(‘from C‘)
class D(G):
def test(self):
print(‘from D‘)
class A(B,C,D):
# def test(self):
# print(‘from A‘)
pass
obj = A()
obj.test() # 如上图,查找顺序为:obj->A->B->E->G->C->F->D->object
# 可依次注释上述类中的方法test来进行验证,注意请在python2.x中进行测试
新式类:广度优先
class G(object):
def test(self):
print(‘from G‘)
class E(G):
def test(self):
print(‘from E‘)
class F(G):
def test(self):
print(‘from F‘)
class B(E):
def test(self):
print(‘from B‘)
class C(F):
def test(self):
print(‘from C‘)
class D(G):
def test(self):
print(‘from D‘)
class A(B,C,D):
# def test(self):
# print(‘from A‘)
pass
obj = A()
obj.test() # 如上图,查找顺序为:obj->A->B->E->C->F->D->G->object
# 可依次注释上述类中的方法test来进行验证
原文:https://www.cnblogs.com/guanxiying/p/12667255.html