首页 > 其他 > 详细

Keras实现mnist

时间:2020-04-12 14:34:55      阅读:55      评论:0      收藏:0      [点我收藏+]
 1 import tensorflow as tf
 2 import numpy as np
 3 from tensorflow.keras.utils import to_categorical
 4 
 5 # 导入数据
 6 mnist = np.load(mnist.npz)
 7 x_train, y_train = mnist[x_train], mnist[y_train]
 8 x_test, y_test = mnist[x_test], mnist[y_test]
 9 # 归一化处理
10 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
11 x_train = x_train / 255
12 x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
13 x_test = x_test / 255
14 # 转为独热码
15 y_train = to_categorical(y_train, 10)
16 y_test = to_categorical(y_test, 10)
17 # 模型
18 model = tf.keras.models.Sequential([
19     tf.keras.layers.Conv2D(6, (5, 5), activation=relu, input_shape=(28, 28, 1)),
20     tf.keras.layers.MaxPool2D((2, 2)),
21     tf.keras.layers.Conv2D(16, (5, 5), activation=relu),
22     tf.keras.layers.MaxPool2D((2, 2)),
23     tf.keras.layers.Flatten(),
24     tf.keras.layers.Dense(120, activation=relu),
25     tf.keras.layers.Dense(84, activation=relu),
26     tf.keras.layers.Dense(10, activation=softmax)
27 ])
28 model.compile(
29     optimizer=tf.keras.optimizers.Adam(),
30     loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),
31     metrics=[accuracy]
32 )
33 # 训练
34 model.fit(x_train, y_train, batch_size=500, epochs=5, validation_data=(x_test, y_test), validation_freq=1, shuffle=True)
35 model.summary()
36 # 保存模型
37 # model.save(‘leNet-5_mnist_model.h5‘)

 

Keras实现mnist

原文:https://www.cnblogs.com/sqdtss/p/12685090.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!