首页 > 其他 > 详细

BZOJ 5201 Connections

时间:2020-04-13 00:35:31      阅读:58      评论:0      收藏:0      [点我收藏+]

原文链接:https://blog.csdn.net/qq_34283998/java/article/details/82983653

[NEERC2017]Connections

给定一个n个点,m条边的强连通有向图。请保留其中恰好2n条边,使得它还是强连通的。
Input
第一行包含一个正整数T,表示测试数据的组数。
每组数据第一行包含两个正整数n,m(n>=4,m>2n),表示点数和边数。
接下来m行,每行两个正整数x,y(1<=x,y<=n,x!=y),表示一条x到y的单向边。
数据保证图强连通,且不存在重边,sum(n),sum(m)<=100000。
Output
对于每组数据,输出m-2n行
每行描述一条要被删除的边,和输入格式一样,有多解输出任意一组。
Sample Input
1

4 9

1 2

1 3

2 3

2 4

3 2

3 4

4 1

4 2

4 3
Sample Output
1 3

对于每一个节点,我们保留一条树边,以及最多一条返祖边.注意这条返祖边要指向尽可能高的位置.这样下来保留的边数一定小于等于2∗n 2*n2∗n,并且满足图依旧是强连通的.至于为什么,贪心的想一想.既然之前满足强连通,我们保留走到dfn最小的返祖边后也一定是强连通的.最后随意乱加边直到2∗n 2*n2∗n即可.
只需进行一次Tarjan,保留树边,并在过程中维护出当前点通过返祖边走向的dfn最小的点,然后保留这条返祖边.

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=100005;
int n,m,ncnt,tot;
int dfn[MAXN],edge[MAXN];
bool vis[MAXN];
int head[MAXN],ecnt;
struct node{
    int v,nxt;
}E[MAXN*2];

void addedge(int u,int v)

{
    E[++ecnt]=(node){v,head[u]};
    head[u]=ecnt;
}

void Tarjan(int u)
{
    dfn[u]=++ncnt;
    for(int i=head[u];i;i=E[i].nxt)
	{
        int v=E[i].v;
        if(!dfn[v])
		{
            vis[i]=1,tot++;//选择一条树边 
            Tarjan(v);
        }
        else 
		if(dfn[v]<dfn[E[edge[u]].v]) //选择一条返祖边,并且其DFN的值尽可能的小 
		    edge[u]=i;
    }
    if(edge[u]) //将选择的返祖边打上标记 
	   tot++,vis[edge[u]]=1;
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        ecnt=ncnt=tot=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) edge[i]=head[i]=dfn[i]=0;
        for(int i=1;i<=m;i++) vis[i]=0;
        for(int i=1;i<=m;i++)
		{
            int u,v;
            scanf("%d%d",&u,&v);
            addedge(u,v);
        }
        dfn[0]=0x3f3f3f3f;
        Tarjan(1);
        for(int i=1;i<=m&&tot<2*n;i++)
            if(!vis[i]) 
			    vis[i]=1,tot++;
        for(int u=1;u<=n;u++)
            for(int i=head[u];i;i=E[i].nxt)
                if(!vis[i]) printf("%d %d\n",u,E[i].v);
    }
}

  

 

BZOJ 5201 Connections

原文:https://www.cnblogs.com/cutemush/p/12688568.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!