首页 > 其他 > 详细

CVPR2018关键字分析生成词云图与查找

时间:2020-04-15 00:36:12      阅读:61      评论:0      收藏:0      [点我收藏+]

今日目标:爬取CVPR2018论文,进行分析总结出提到最多的关键字,生成wordCloud词云图展示,并且设置点击后出现对应的论文以及链接

对任务进行分解:

①爬取CVPR2018的标题,简介,关键字,论文链接

②将爬取的信息生成wordCloud词云图展示

③设置点击事件,展示对应关键字的论文以及链接

 

一、爬虫实现

由于文章中并没有找到关键字,于是将标题进行拆分成关键字,用逗号隔开

技术分享图片
import re
import requests
from bs4 import BeautifulSoup
import demjson
import pymysql
import os

headers = {user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36}#创建头部信息
url=http://openaccess.thecvf.com/CVPR2018.py
r=requests.get(url,headers=headers)
content=r.content.decode(utf-8)
soup = BeautifulSoup(content, html.parser)
dts=soup.find_all(dt,class_=ptitle)
hts=http://openaccess.thecvf.com/
#数据爬取
alllist=[]
for i in range(len(dts)):
    print(这是第+str(i)+)
    title=dts[i].a.text.strip()
    href=hts+dts[i].a[href]
    r = requests.get(href, headers=headers)
    content = r.content.decode(utf-8)
    soup = BeautifulSoup(content, html.parser)
    #print(title,href)
    divabstract=soup.find(name=div,attrs={"id":"abstract"})
    abstract=divabstract.text.strip()
    #print(‘第‘+str(i)+‘个:‘,abstract)
    alllink=soup.select(a)
    link=hts+alllink[4][href][6:]
    keyword=str(title).split( )
    keywords=‘‘
    for k in range(len(keyword)):
        if(k==0):
            keywords+=keyword[k]
        else:
            keywords+=,+keyword[k]
    value=(title,abstract,link,keywords)
    alllist.append(value)
print(alllist)
tuplist=tuple(alllist)
#数据保存
db = pymysql.connect("localhost", "root", "fengge666", "yiqing", charset=utf8)
cursor = db.cursor()
sql_cvpr = "INSERT INTO cvpr values (%s,%s,%s,%s)"
try:
    cursor.executemany(sql_cvpr,tuplist)
    db.commit()
except:
      print(执行失败,进入回调3)
      db.rollback()
db.close()
View Code

 

二、将数据进行wordCloud展示

首先找到对应的包,来展示词云图

<script src=‘https://cdn.bootcss.com/echarts/3.7.0/echarts.simple.js‘></script>
<script src=‘js/echarts-wordcloud.js‘></script>
<script src=‘js/echarts-wordcloud.min.js‘></script>

然后通过异步加载,将后台的json数据进行展示。

由于第一步我们获得的数据并没有对其进行分析,因此我们在dao层会对其进行数据分析,找出所有的关键字的次数并对其进行降序排序(用Map存储是最好的方式)

技术分享图片
public Map<String,Integer> getallmax()
    {
        String sql="select * from cvpr";
        Map<String, Integer>map=new HashMap<String, Integer>();
        Map<String, Integer>sorted=new HashMap<String, Integer>();
        Connection con=null;
        Statement state=null;
        ResultSet rs=null;
        con=DBUtil.getConn();
        try {
            state=con.createStatement();
            rs=state.executeQuery(sql);
            while(rs.next())
            {
                String keywords=rs.getString("keywords");
                String[] split = keywords.split(",");
                for(int i=0;i<split.length;i++)
                {
                    if(map.get(split[i])==null)
                    {
                        map.put(split[i],0);
                    }
                    else
                    {
                        map.replace(split[i], map.get(split[i])+1);
                    }
                }
            }
        } catch (SQLException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        DBUtil.close(rs, state, con);
        sorted = map
                .entrySet()
                .stream()
                .sorted(Collections.reverseOrder(comparingByValue()))
                .collect(
                        toMap(Map.Entry::getKey, Map.Entry::getValue, (e1, e2) -> e2,
                                LinkedHashMap::new));
        return sorted;
    }
View Code

到servlet层后,我们还需对数据进行一定的筛选(介词,a,等词语应该去除掉,要不然会干扰我们分析关键字),取前30名关键字,在前台进行展示

技术分享图片
request.setCharacterEncoding("utf-8");
        Map<String, Integer>sortMap=dao.getallmax();
        JSONArray json =new JSONArray();
        int k=0;
        for (Map.Entry<String, Integer> entry : sortMap.entrySet()) 
        {
            JSONObject ob=new JSONObject();
            ob.put("name", entry.getKey());
            ob.put("value", entry.getValue());
            if(!(entry.getKey().equals("for")||entry.getKey().equals("and")||entry.getKey().equals("With")||entry.getKey().equals("of")||entry.getKey().equals("in")||entry.getKey().equals("From")||entry.getKey().equals("A")||entry.getKey().equals("to")||entry.getKey().equals("a")||entry.getKey().equals("the")||entry.getKey().equals("by")))
            {
                json.add(ob);
                k++;
            }
            if(k==30)
                break;
        }
        System.out.println(json.toString());
        response.getWriter().write(json.toString());
View Code

 

三、设置点击事件,展示对应关键字的论文以及链接

//设置点击效果
var ecConfig = echarts.config;
myChart.on(‘click‘, eConsole);

用函数来实现点击事件的内容:通过点击的关键字,后台进行模糊查询,找到对应的论文题目以及链接,返回到前端页面

技术分享图片
 //点击事件
        function eConsole(param) {  
            if (typeof param.seriesIndex == ‘undefined‘) {  
                return;  
            }  
            if (param.type == ‘click‘) {
                var word=param.name;
                var htmltext="<table class=‘table table-striped‘ style=‘text-align:center‘><caption style=‘text-align:center‘>论文题目与链接</caption>";
                $.post(
                        ‘findkeytitle‘,
                        {‘word‘:word},
                        function(result)
                        {
                            json=JSON.parse(result);
                            for(i=0;i<json.length;i++)
                            {
                                htmltext+="<tr><td><a target=‘_blank‘ href=‘"+json[i].Link+"‘>"+json[i].Title+"</a></td></tr>";    
                            }
                            htmltext+="</table>"
                            $("#show").html(htmltext);
                        }
                )
            }  
       }
View Code

 

成果展示:

技术分享图片

 

 

前台页面代码:

技术分享图片
<html>
    <head>
        <meta charset="utf-8">
        <link href="css/bootstrap.min.css" rel="stylesheet">
        <!-- jQuery (Bootstrap 的所有 JavaScript 插件都依赖 jQuery,所以必须放在前边) -->
        <script src="js/jquery-1.11.3.min.js"></script>
        <!-- 加载 Bootstrap 的所有 JavaScript 插件。你也可以根据需要只加载单个插件。 -->
        <script src="js/bootstrap.js"></script>
        <script src=‘https://cdn.bootcss.com/echarts/3.7.0/echarts.simple.js‘></script>
        <script src=‘js/echarts-wordcloud.js‘></script>
        <script src=‘js/echarts-wordcloud.min.js‘></script>
    </head>
    <body>
        <style>
            body{
                background-color: black;
            }
            #main {
                width: 70%;
                height: 100%;
                margin: 0;
                float:right;
                background: black;
            }
            #show{
                overflow-x: auto;
                 overflow-y: auto;
                width: 30%;
                height: 100%;
                float:left;
                margin-top:100dp;
                padding-top:100dp;
                background: pink;
            }
        </style>
        <div id=‘show‘></div>
        <div id=‘main‘></div>
    <script>
        $(function(){
            echartsCloud();
        });
        //点击事件
        function eConsole(param) {  
            if (typeof param.seriesIndex == undefined) {  
                return;  
            }  
            if (param.type == click) {
                var word=param.name;
                var htmltext="<table class=‘table table-striped‘ style=‘text-align:center‘><caption style=‘text-align:center‘>论文题目与链接</caption>";
                $.post(
                        findkeytitle,
                        {word:word},
                        function(result)
                        {
                            json=JSON.parse(result);
                            for(i=0;i<json.length;i++)
                            {
                                htmltext+="<tr><td><a target=‘_blank‘ href=‘"+json[i].Link+"‘>"+json[i].Title+"</a></td></tr>";    
                            }
                            htmltext+="</table>"
                            $("#show").html(htmltext);
                        }
                )
            }  
       }
        function echartsCloud(){
           
            
            $.ajax({
                 url:"getmax",
                 type:"POST",
                 dataType:"JSON",
                 async:true,
                 success:function(data)
                 {
                     var mydata = new Array(0);
               
                     for(var i=0;i<data.length;i++)
                     {
                         var d = {
                                 
                         };
                         d["name"] = data[i].name;//.substring(0, 2);
                         d["value"] = data[i].value;
                         mydata.push(d);
                     }
                     var myChart = echarts.init(document.getElementById(main));
                     //设置点击效果
                     var ecConfig = echarts.config;
                     myChart.on(click, eConsole);
                     
                     myChart.setOption({
                         title: {
                             text: ‘‘
                         },
                         tooltip: {},
                         series: [{
                             type : wordCloud,  //类型为字符云
                                 shape:smooth,  //平滑
                                 gridSize : 8, //网格尺寸
                                 size : [50%,50%],
                                 //sizeRange : [ 50, 100 ],
                                 rotationRange : [-45, 0, 45, 90], //旋转范围
                                 textStyle : {
                                     normal : {
                                         fontFamily:微软雅黑,
                                         color: function() {
                                             return rgb( + 
                                                 Math.round(Math.random() * 255) +
                                          ,  + Math.round(Math.random() * 255) +
                                          ,  + Math.round(Math.random() * 255) + )
                                                }
                                         },
                                     emphasis : {
                                         shadowBlur : 5,  //阴影距离
                                         shadowColor : #333  //阴影颜色
                                     }
                                 },
                                 left: center,
                                 top: center,
                                 right: null,
                                 bottom: null,
                                 width:100%,
                                 height:100%,
                                 data:mydata
                         }]
                     });
                 }
             });  
    }
    </script>                    
    </body>
</html>
View Code

 

CVPR2018关键字分析生成词云图与查找

原文:https://www.cnblogs.com/xiaofengzai/p/12702136.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!