问题描述:
假设一个试题库中有 nn 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 mm 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
编程任务:
对于给定的组卷要求,计算满足要求的组卷方案。
第一行有两个正整数 kk 和 nn。kk 表示题库中试题类型总数,nn 表示题库中试题总数。
第二行有 kk 个正整数,第 ii 个正整数表示要选出的类型 ii 的题数。这 kk 个数相加就是要选出的总题数 mm。
接下来的 nn 行给出了题库中每个试题的类型信息。每行的第一个正整数 pp 表明该题可以属于 pp 类,接着的 pp 个数是该题所属的类型号。
输出共 kk 行,第 ii 行输出 i:
后接类型 ii 的题号。
如果有多个满足要求的方案,只要输出一个方案。
如果问题无解,则输出No Solution!
。
3 15 3 3 4 2 1 2 1 3 1 3 1 3 1 3 3 1 2 3 2 2 3 2 1 3 1 2 1 2 2 1 2 2 1 3 2 1 2 1 1 3 1 2 3
1: 1 6 8 2: 7 9 10 3: 2 3 4 5
思路
对于这种有限制的分配问题很容易想到用网络流建图解决
对于这道题,显然可以把试题和类型看做成二部图的两个部分
因为每道题只可以选一次
显然这张图的边容量最大为1
然后对整张图跑最大流
如果最大流 == 需要的题数
说明有方案
如何输出方案
类似于前面那道飞行员问题
因为容量为1,只要这条边被利用过,
悔边的容量一定为1.
所以只需要枚举所有被用到的类型的悔边即可
CODE
1 #include <bits/stdc++.h> 2 #define dbg(x) cout << #x << "=" << x << endl 3 #define eps 1e-8 4 #define pi acos(-1.0) 5 6 using namespace std; 7 typedef long long LL; 8 9 const int inf = 0x3f3f3f3f; 10 11 template<class T>inline void read(T &res) 12 { 13 char c;T flag=1; 14 while((c=getchar())<‘0‘||c>‘9‘)if(c==‘-‘)flag=-1;res=c-‘0‘; 15 while((c=getchar())>=‘0‘&&c<=‘9‘)res=res*10+c-‘0‘;res*=flag; 16 } 17 18 namespace _buff { 19 const size_t BUFF = 1 << 19; 20 char ibuf[BUFF], *ib = ibuf, *ie = ibuf; 21 char getc() { 22 if (ib == ie) { 23 ib = ibuf; 24 ie = ibuf + fread(ibuf, 1, BUFF, stdin); 25 } 26 return ib == ie ? -1 : *ib++; 27 } 28 } 29 30 int qread() { 31 using namespace _buff; 32 int ret = 0; 33 bool pos = true; 34 char c = getc(); 35 for (; (c < ‘0‘ || c > ‘9‘) && c != ‘-‘; c = getc()) { 36 assert(~c); 37 } 38 if (c == ‘-‘) { 39 pos = false; 40 c = getc(); 41 } 42 for (; c >= ‘0‘ && c <= ‘9‘; c = getc()) { 43 ret = (ret << 3) + (ret << 1) + (c ^ 48); 44 } 45 return pos ? ret : -ret; 46 } 47 48 const int maxn = 200007; 49 50 int n, m; 51 int s, t; 52 53 struct edge{ 54 int from,to; 55 LL cap,flow; 56 }; 57 58 map<int, int> vis; 59 60 struct DINIC { 61 int head[maxn << 1], nxt[maxn << 1], edge[maxn << 1], cnt; 62 int cap[maxn << 1], depth[maxn << 1]; 63 64 void init() { 65 cnt = 1; 66 memset(head, 0, sizeof(head)); 67 } 68 69 void BuildGraph(int u, int v, int w) { 70 ++cnt; 71 edge[cnt] = v; 72 nxt[cnt] = head[u]; 73 cap[cnt] = w; 74 head[u] = cnt; 75 76 ++cnt; 77 edge[cnt] = u; 78 nxt[cnt] = head[v]; 79 cap[cnt] = 0; 80 head[v] = cnt; 81 } 82 83 queue<int> q; 84 85 bool bfs() { 86 memset(depth, 0, sizeof(depth)); 87 depth[s] = 1; 88 q.push(s); 89 while(!q.empty()) { 90 int u = q.front(); 91 q.pop(); 92 for ( int i = head[u]; i; i = nxt[i] ) { 93 int v = edge[i]; 94 if(depth[v]) { 95 continue; 96 } 97 if(cap[i]) { 98 depth[v] = depth[u] + 1; 99 q.push(v); 100 } 101 } 102 } 103 return depth[t]; 104 } 105 106 int dfs(int u, int dist) { 107 if(u == t) { 108 return dist; 109 } 110 int flow = 0; 111 for ( int i = head[u]; i && dist; i = nxt[i] ) { 112 if(cap[i] == 0) 113 continue; 114 int v = edge[i]; 115 if(depth[v] != depth[u] + 1) { 116 continue; 117 } 118 int res = dfs(v, min(cap[i], dist)); 119 cap[i] -= res; 120 cap[i ^ 1] += res; 121 //printf("cap[%d]:%d\n",t, cap[t]); 122 dist -= res; 123 flow += res; 124 } 125 return flow; 126 } 127 128 int maxflow() { 129 int ans = 0; 130 while(bfs()) { 131 ans += dfs(s, inf); 132 } 133 return ans; 134 } 135 } dinic; 136 137 int main() 138 { 139 //freopen("data.txt", "r", stdin); 140 int k; 141 read(k); read(n); 142 dinic.init(); 143 s = 0, t = n + k + 1; 144 int x; 145 for ( int i = 1; i <= k; ++i ) { 146 read(x); 147 m += x; 148 dinic.BuildGraph(n + i, t, x); 149 } 150 for ( int i = 1; i <= n; ++i ) { 151 dinic.BuildGraph(s, i, 1); 152 int p; 153 read(p); 154 for ( int j = 1; j <= p; ++j ) { 155 read(x); 156 dinic.BuildGraph(i, x + n, 1); 157 } 158 } 159 int tot = dinic.maxflow(); 160 //dbg(tot); 161 if(tot != m) { 162 puts("No Solution!"); 163 } 164 else { 165 for ( int i = 1; i <= k; ++i ) { 166 int u = n + i; 167 printf("%d:",i); 168 for ( int j = dinic.head[u]; j; j = dinic.nxt[j] ) { 169 int v = dinic.edge[j]; 170 if(dinic.cap[j] && v <= n) { 171 printf(" %d",v); 172 } 173 } 174 printf("\n"); 175 } 176 } 177 return 0; 178 }
P2763 试题库问题 【网络流24题】【最大流】【路径覆盖】
原文:https://www.cnblogs.com/orangeko/p/12723543.html