运行tensorboard.py文件后。执行下面的语句(Ubuntu中执行下面命令)会出现一个网址,复制网址在谷歌或者火狐浏览器中打卡开,就可以在tensorboard中的graph看到图
在命令行中输入
(menpo) queen@queen-X550LD:~/Downloads/py$ tensorboard --logdir logs
# -*- coding: UTF-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist=input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小 batch_size=100 #计算一共有多少个批次 n_batch=mnist.train.num_examples // batch_size #命名空间 with tf.name_scope(‘input‘): #定义两个placeholder x=tf.placeholder(tf.float32,[None,784],name = ‘x-input‘) y=tf.placeholder(tf.float32,[None,10],name = ‘y-input‘) with tf.name_scope(‘layer‘): #创建一个简单的神经网络 with tf.name_scope(‘wights‘): W=tf.Variable(tf.zeros([784,10]),name=‘W‘) with tf.name_scope(‘biase‘): b=tf.Variable(tf.zeros([1,10]),name=‘b‘) with tf.name_scope(‘wx_plus_b‘): wx_plus_b = tf.matmul(x,W)+b with tf.name_scope(‘softmax‘): prediction=tf.nn.softmax(wx_plus_b) #二次代价函数 #loss = tf.reduce_mean(tf.square(y-prediction)) #使用交叉熵代价函数 with tf.name_scope(‘loss‘): loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction)) #使用梯度下降法优化 with tf.name_scope(‘train‘): train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init=tf.global_variables_initializer() with tf.name_scope(‘accuracy‘): with tf.name_scope(‘correct_prediction‘): #结果放在一个布尔型列表中 correct_prediction=tf.equal(tf.argmax(y,1), tf.argmax(prediction,1)) #argmax函数返回一维向量中最大值所在的位置 with tf.name_scope(‘accuracy‘): #求准确率 accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter(‘logs/‘,sess.graph)# 当前文件夹下的logs文件夹,里面存放graph(图)的结构。如果当前文件夹没有logs则会自动生成 for epoch in range(1): for batch in range(n_batch):#把所有图片都训练一遍 batch_xs,batch_ys=mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs, y:batch_ys}) acc=sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels}) print("Iter"+str(epoch)+",Testing Accuracy "+str(acc))
tensorboard 里面的结果如下所示
使用Tensorboard进行结构可视化,以及网络运算过程可视化
原文:https://www.cnblogs.com/spore/p/12747148.html