Expression表达式目录树:一个能拼装能解析的数据结构,语法树。
下面我们来看个简单的例子:
需求:一个Web应用通过前端收集用户的输入成为Dto,然后将Dto转换成领域模型并持久化到数据库中。也就是说在实际的软件开发项目中,我们的“业务逻辑”常常需要我们对同样的数据进行各种变换。
解决这个问题我们的常规做法是:使用AutoMapper来完成Dto与Model之间的实体映射。
此处引发一个思考:如果让我们自己来完成实体映射,那么我们有哪些解决思路呢?
准备测试用的实体和Dto:
/// <summary> /// 实体 /// </summary> public class People { public int Age { get; set; } public string Name { get; set; } public int Id; } /// <summary> /// Dto /// </summary> public class DtoPeople { public int Age { get; set; } public string Name { get; set; } public int Id; }
第1种解决思路:硬编码
People people = new People() { Id = 1, Name = "测试", Age = 22 }; for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = new DtoPeople() { Id = people.Id, Name = people.Name, Age = people.Age }; }
第2种解决思路:反射
/// <summary> /// 反射映射 /// </summary> public class ReflectionMapper { /// <summary> /// 实体转换 /// </summary> /// <typeparam name="T">传入类型</typeparam> /// <typeparam name="TResult">返回值类型</typeparam> /// <param name="tIn">传入参数</param> /// <returns>转换好的实体</returns> public static TResult Trans<T, TResult>(T tIn) { TResult tOut = Activator.CreateInstance<TResult>(); foreach (var itemOut in tOut.GetType().GetProperties()) { var propIn = tIn.GetType().GetProperty(itemOut.Name); itemOut.SetValue(tOut, propIn.GetValue(tIn)); } foreach (var itemOut in tOut.GetType().GetFields()) { var fieldIn = tIn.GetType().GetField(itemOut.Name); itemOut.SetValue(tOut, fieldIn.GetValue(tIn)); } return tOut; } }
第3种解决思路:序列化反序列化
/// <summary> /// 使用第三方序列化反序列化工具 /// </summary> public class SerializeMapper { /// <summary> /// 实体转换 /// </summary> public static TResult Trans<T, TResult>(T tIn) { return JsonConvert.DeserializeObject<TResult>(JsonConvert.SerializeObject(tIn)); } }
第4种解决思路:表达式目录树 + 字典缓存
/// <summary> /// 生成表达式目录树 字典缓存 /// </summary> public class ExpressionMapper { /// <summary> /// 字典缓存--hash分布 /// </summary> private static Dictionary<string, object> _dic = new Dictionary<string, object>(); /// <summary> /// 实体转换 /// </summary> public static TResult Trans<T, TResult>(T tIn) { string key = string.Format("funckey_{0}_{1}", typeof(T).FullName, typeof(TResult).FullName); if (!_dic.ContainsKey(key)) { ParameterExpression parameterExpression = Expression.Parameter(typeof(T), "p"); List<MemberBinding> memberBindingList = new List<MemberBinding>(); foreach (var item in typeof(TResult).GetProperties()) { MemberExpression property = Expression.Property(parameterExpression, typeof(T).GetProperty(item.Name)); MemberBinding memberBinding = Expression.Bind(item, property); memberBindingList.Add(memberBinding); } foreach (var item in typeof(TResult).GetFields()) { MemberExpression property = Expression.Field(parameterExpression, typeof(T).GetField(item.Name)); MemberBinding memberBinding = Expression.Bind(item, property); memberBindingList.Add(memberBinding); } MemberInitExpression memberInitExpression = Expression.MemberInit(Expression.New(typeof(TResult)), memberBindingList.ToArray()); Expression<Func<T, TResult>> lambda = Expression.Lambda<Func<T, TResult>>(memberInitExpression, new ParameterExpression[] { parameterExpression }); Func<T, TResult> func = lambda.Compile(); //调用Compile方法将表达式转换成委托 _dic[key] = func; //拼装是一次性的 } return ((Func<T, TResult>)_dic[key]).Invoke(tIn); } }
第5种解决思路:表达式目录树 + 泛型缓存(泛型缓存特点:为不同类型的组合去缓存一个结果。)
/// <summary> /// 生成表达式目录树 泛型缓存 /// </summary> /// <typeparam name="T">传入参数类型</typeparam> /// <typeparam name="TResult">返回值类型</typeparam> public class ExpressionGenericMapper<T, TResult> { /// <summary> /// 泛型缓存 /// </summary> private static Func<T, TResult> _func = null; /// <summary> /// 静态构造函数(只会被调用一次) /// </summary> static ExpressionGenericMapper() { ParameterExpression parameterExpression = Expression.Parameter(typeof(T), "p"); List<MemberBinding> memberBindingList = new List<MemberBinding>(); foreach (var item in typeof(TResult).GetProperties()) { MemberExpression property = Expression.Property(parameterExpression, typeof(T).GetProperty(item.Name)); MemberBinding memberBinding = Expression.Bind(item, property); memberBindingList.Add(memberBinding); } foreach (var item in typeof(TResult).GetFields()) { MemberExpression property = Expression.Field(parameterExpression, typeof(T).GetField(item.Name)); MemberBinding memberBinding = Expression.Bind(item, property); memberBindingList.Add(memberBinding); } MemberInitExpression memberInitExpression = Expression.MemberInit(Expression.New(typeof(TResult)), memberBindingList.ToArray()); Expression<Func<T, TResult>> lambda = Expression.Lambda<Func<T, TResult>>(memberInitExpression, new ParameterExpression[] { parameterExpression }); _func = lambda.Compile();//拼装是一次性的 } /// <summary> /// 实体转换 /// </summary> public static TResult Trans(T t) { return _func(t); } }
下面我们来测试下这5种方案的性能:
/// <summary> /// 性能测试 /// </summary> public static void MapperTest() { People people = new People() { Id = 1, Name = "测试", Age = 22 }; long common = 0; long generic = 0; long cache = 0; long reflection = 0; long serialize = 0; { Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = new DtoPeople() { Id = people.Id, Name = people.Name, Age = people.Age }; } watch.Stop(); common = watch.ElapsedMilliseconds; } { Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = ReflectionMapper.Trans<People, DtoPeople>(people); } watch.Stop(); reflection = watch.ElapsedMilliseconds; } { Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = SerializeMapper.Trans<People, DtoPeople>(people); } watch.Stop(); serialize = watch.ElapsedMilliseconds; } { Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = ExpressionMapper.Trans<People, DtoPeople>(people); } watch.Stop(); cache = watch.ElapsedMilliseconds; } { Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1_000_000; i++) { DtoPeople dtoPeople = ExpressionGenericMapper<People, DtoPeople>.Trans(people); } watch.Stop(); generic = watch.ElapsedMilliseconds; } Console.WriteLine($"common = { common} ms"); Console.WriteLine($"reflection = { reflection} ms"); Console.WriteLine($"serialize = { serialize} ms"); Console.WriteLine($"cache = { cache} ms"); Console.WriteLine($"generic = { generic} ms"); //性能比AutoMapper还要高 }
来看下运行结果:
从运行结果可以看出硬编码的性能是最高的,其次就是我们的表达式目录树 + 泛型缓存,这2个的性能几乎是同一个数量级的。
小结:
1、既需要考虑动态(通用),又要保证性能(硬编码)---动态生成硬编码---表达式目录树拼装(动态生成委托)(得到的就是硬编码)。
2、如果使用反射来实现某个功能时性能不高,可以考虑使用表达式目录树拼装来实现这个功能(动态生成委托)。
原文:https://www.cnblogs.com/xyh9039/p/12748983.html