嘤~
#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll; const int inf=~0u>>2; const ll INF=~0ull>>2; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;} typedef double lf;
//#define int ll
signed main(){
for(int T=read();T--;){
int n=read();
int ans=0;
repeat(i,1,60)
if(n%((1ll<<i)-1)==0)ans=n/((1ll<<i)-1);
cout<<ans<<endl;
}
return 0;
}
嘤嘤~
#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll; const int inf=~0u>>2; const ll INF=~0ull>>2; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;} typedef double lf;
//#define int ll
signed main(){
for(int T=read();T--;){
int n=read();
if(n%4==2)cout<<"NO"<<endl;
else{
ll sum=0;
cout<<"YES"<<endl;
repeat(i,1,n/2+1)
cout<<i*2<<‘ ‘,sum+=i*2;
repeat(i,1,n/2)
cout<<i*2-1<<‘ ‘,sum-=i*2-1;
cout<<sum<<endl;
}
}
return 0;
}
略略略~
#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll; const int inf=~0u>>2; const ll INF=~0ull>>2; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;} typedef double lf;
//#define int ll
int a[N];
#define sgn(x) ((x)>0?1:-1)
signed main(){
for(int T=read();T--;){
int n=read();
repeat(i,0,n)a[i]=read();
int flag=sgn(a[0]);
int m=-inf;
ll ans=0;
repeat(i,0,n){
if(sgn(a[i])==flag){
m=max(m,a[i]);
}
else{
flag=-flag;
ans+=m;
m=a[i];
}
}
ans+=m;
cout<<ans<<endl;
}
return 0;
}
两个数 \(a,b\) 要改成 \(s\) 的代价是
\(cost_i[s]=\begin{cases}0&a+b=s\\1&a+b\not=s∧s∈[a,a+k]∪[b,b+k]\\2&otherwise\end{cases}\)
考虑把所有对称的两个数的代价加起来(即把所有 \(cost_i\) 加起来),可以得到下标为 \(s\) 的数组 \(cost[s]\)
上述操作中直接维护数组 \(cost[s]\) 是不行的,由于我们每次修改都是区间加,并且离线操作,可以考虑用差分数组,如果区间 \([l,r]\) 要加上 \(d\),可以 \(a[l]+=d,a[r+1]-=d\),最后求它的前缀和,还原成 \(cost[s]\)
这样我们对 \(s\) 的所有情况的代价都求出来了,min一下即可
#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=400010; typedef long long ll; const int inf=~0u>>2; const ll INF=~0ull>>2; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;} typedef double lf;
//#define int ll
int a[N],s[N];
void add(int x,int y,int d){
s[x]+=d;
s[y+1]-=d;
}
signed main(){
for(int T=read();T--;){
int n=read(),k=read();
fill(s,s+2*k+2,0);
repeat(i,0,n)a[i]=read();
repeat(i,0,n/2){
int x=a[i],y=a[n-i-1];
if(x>y)swap(x,y);
add(0,x,2);
add(x+1,x+y-1,1);
add(x+y+1,y+k,1);
add(y+k+1,k*2,2);
}
int ans=inf;
repeat(i,1,k*2+1){
s[i]+=s[i-1];
ans=min(ans,s[i]);
}
cout<<ans<<endl;
}
return 0;
}
傻逼题,我被套路了,原来这么简单
先求每个点到 \(A,B,C\) 最短路径(bfs即可),然后遍历所有点 \(v\),计算 \(A→v→B→v→C\) 并 \(O(1)\) 更新答案
怎么更新答案?由于 \(v→B\) 要走两次,所以 \(len(v→B)\) 个最小边权要赋给它们,剩下 \(len(v→A)+len(v→C)\) 个最小边权赋给路径上其他边(至于对price排序求前缀和,就不多说了)
#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll; const int inf=~0u>>2; const ll INF=~0ull>>2; ll read(){ll x; if(scanf("%lld",&x)==-1)exit(0); return x;} typedef double lf;
#define int ll
int dis1[N],dis2[N],dis3[N],price[N];
int n,m,s1,s2,s3;
vector<int> a[N];
queue<int> q;
void bfs(int s,int dis[]){
q.push(s);
fill(dis,dis+n+1,-1);
dis[s]=0;
while(!q.empty()){
int x=q.front(); q.pop();
for(auto p:a[x])
if(dis[p]==-1){
dis[p]=dis[x]+1;
q.push(p);
}
}
}
ll ans;
signed main(){
for(int T=read();T--;){
n=read();
repeat(i,0,n+1)a[i].clear();
m=read(),s1=read(),s2=read(),s3=read();
repeat(i,1,m+1)price[i]=read();
sort(price+1,price+m+1);
repeat(i,1,m+1)price[i]+=price[i-1];
repeat(i,0,m){
int x=read(),y=read();
a[x].push_back(y);
a[y].push_back(x);
}
bfs(s1,dis1);
bfs(s2,dis2);
bfs(s3,dis3);
ans=INF;
repeat(i,1,n+1){
int t2=dis2[i];
int t1=dis1[i]+dis3[i];
if(t2+t1<=m)
ans=min(ans,price[t2]+price[t2+t1]);
}
cout<<ans<<endl;
}
return 0;
}
Codeforces Round #636 (Div. 3) 题解的草稿
原文:https://www.cnblogs.com/axiomofchoice/p/12749281.html