1.用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?
逻辑回归是机器学习算法的一种,它是在线性回归模型的基础上加入类别映射,从而实现分类问题。逻辑回归算法是在线性回归的基础上,构造因变量y的转换函数,将y的数值划分到0-1两类,或者多类,实现对事物的分类拟合与预测。它本质上还是一个线性回归模型,从回归的角度来看,它可以算是非线性回归算法。逻辑回归算法原理简单、高效,在实际中应用较为广泛。
2.自述一下什么是过拟合和欠拟合?
拟合是将数据之间模拟出一种近似函数的关系,来对数据的联系进行描述,从而得到某种结论。
3.思考一下逻辑回归的应用场景有哪些?
原文:https://www.cnblogs.com/zzj420133722/p/12762985.html