首页 > 其他 > 详细

hdu 4405 Aeroplane chess(概率DP 求期望__附求期望讲解方法)

时间:2014-09-06 20:03:44      阅读:323      评论:0      收藏:0      [点我收藏+]

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4405




Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.
 
Input
There are multiple test cases. 
Each test case contains several lines.
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  
The input end with N=0, M=0. 
 
Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
 
Sample Input
2 0 8 3 2 4 4 5 7 8 0 0
 
Sample Output
1.1667 2.3441
 
Source


题意:

飞行棋,从0到n,置骰子,置到几就往前走几步,前进中会有捷径,比如2和5连到一起了,那你走到2时可以直接跳到5,如果5和8连到一起了,那你还可以继续跳到8,最后问跳到n时平均置几次骰子,也就是求期望。


代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
double dp[100017];
int a[100017];
void init()
{
    memset(dp,0,sizeof(dp));
    memset(a,0,sizeof(a));
}
int main()
{
    int n, m;
    int u, v;
    while(~scanf("%d%d",&n,&m))
    {
        if(n == 0 && m == 0)
            break;
        init();
        for(int i = 0; i < m; i++)
        {
            scanf("%d%d",&u,&v);
            a[u] = v;
        }
        for(int i = n-1; i >= 0; i--)
        {
            if(a[i])
            {
                dp[i] = dp[a[i]];
                continue;
            }
            dp[i]=1;
            for(int j = 1; j <= 6; j++)
            {
                int t = i+j;
                dp[i] += 1/6.0*dp[t];
            }
        }
        printf("%.4lf\n",dp[0]);
    }
    return 0;
}

附一篇本题写得不错的题解:http://blog.csdn.net/qiqijianglu/article/details/8007941


最后附上求期望的方法讲解(转载自:http://kicd.blog.163.com/blog/static/126961911200910168335852/


近年的acm竞赛中,数学期望问题常有涉及,在以前也常让本人感到很头疼,近来突然开窍,掌握了基本的分析方法,希望对大家有帮助。写得浅薄,可能数学上不够严谨,只供理解。

            首先,来看下期望有啥基本的公式。

对离散型随机变量x,其概率为p,有bubuko.com,布布扣

对随机变量AB, bubuko.com,布布扣

第二条式子是今天的主角,他表明了期望有线性的性质,简单理解就是期望之间可根据关系,简单运算(不严谨的理解)。 这就为我们解决一个期望问题,不断转化为解决另外的期望问题,最终转化到一个已知的期望上。

举一个求期望最简单的例子,见下图。

假设有个人在 1号节点处,每一分钟他会缘着边随机走到一个节点或者在原地停留,问他走到4号节点需要平均几分钟?

bubuko.com,布布扣

 

这是个简单的期望问题,我们用Ei(i=1,2,3,4) 表示从i号节点走到4号节点的数学期望值。根据题意对1号节点有

E1=1/3*E1+1/3*E2+1/3*E3+1 

表示 下一分钟可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一分钟,故要加上1.

同理我们对节点23同样可以列出

E2=(1/3)*E1+(1/3)*E2+(1/3)*E4+1 

E3=(1/3)*E1+(1/3)*E3+(1/3)*E4+1 

 

E4等于多少呢? 很明显E4=0 ④,因为他就是要到点4

 

这样上面1234式其实就是组成了一组方程组,解方程组就可得出E1!!,用高斯消元,复杂度是O(n^3)

 

从上述例子,我们可总结出如何解决期望类问题,根据题意,表示出各个状态的期望(上例的Ei1234,根据概率公式,列出期望之间的方程,解方程即可。

 

下面看用上述思路如何解决一道题(poj2096

原题见附件1

题意简述: 一个人受雇于某公司要找出某个软件的bugssubcomponents,这个软件一共有nbugsssubcomponents,每次他都能同时随机发现1bug1subcomponent,问他找到所有的bugssubcomponents的期望次数。

我们用E(i,j)表示他找到了ibugsjsubcomponents,离找到nbugsssubcomponents还需要的期望次数,这样要求的就是E(0,0),E(n,s)=0,对任意的E(i,j),1次查找4种情况,没发现任何新的bugssubcomponents,发现一个新的bug,发现一个新的subcomponent,同时发现一个新的bugsubcomponent,用概率公式可得:

E(i,j)=1+(i*j/n/s)*E(i,j)+(i*(s-j)/n/s)E(i,j+1)+

((n-i)*j/n/s)*E(i+1,j)+(n-i)*(s-j)/n/s*E(i+1,j+1);

这样根据边界就可解出所有的E(i,j),注意因为当我们找到nbugsssubcomponents就结束,对i>n||j>s均无解的情况,并非期望是0.(数学上常见问题,0和不存在的区别)

那这题是否也是要用高斯消元呢? 用高斯消元得话复杂度是O(n^3),达到10^18 根本是不可解的!!

但其实,注意观察方程,当我们要解E(i,j)的话就需要E(i+1,j),E(I,j+1),E(i+1,j+1), 一开始已知E(n,s),那其实只要我们从高往低一个个解出I,j就可以了! 即可根据递推式解出所有的E(I,j) 复杂度是O(n),10^6 ,完美解决。程序见附件2

 

从上面这道题,我们再次看到了解决期望问题的思路,而且是用到了递推解决问题,其实可递推的原因,当我们把各个状态当成是一个个节点时,概率关系为有向边,我们可看到,可递推的问题其实就是这个关系图是无环的!!那必须要用方程组解决的问题其实就是存在环!!!! 而且我还要指出的是用高斯消元的时候,要注意误差的问题,最好把式子适当的增大,避免解小数,否则误差太大,估计也会卡题。

 

本文到此结束,简单讲解了期望类问题的解决思路,更加深入的学习可参考wc2009两篇的论文,希望能帮到大家!!


                                                  Kicd

                                                                                                                                                                                                        2009.7.31

 




Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.
 

Input
There are multiple test cases. 
Each test case contains several lines.
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  
The input end with N=0, M=0. 
 

Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
 

Sample Input
2 0 8 3 2 4 4 5 7 8 0 0
 

Sample Output
1.1667 2.3441
 

Source

hdu 4405 Aeroplane chess(概率DP 求期望__附求期望讲解方法)

原文:http://blog.csdn.net/u012860063/article/details/39102951

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!