首页 > 其他 > 详细

Edit Distance

时间:2014-09-06 21:18:33      阅读:296      评论:0      收藏:0      [点我收藏+]

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

 

最小编辑距离

设dp[i][j]为w1前i个字符转换成w2前j个字符所需要的最小步骤,那么有

dp[i][j] = min{ 增加一个字符 dp[i-1][j] + 1, 删除一个字符 dp[i][j-1] + 1, 替换一个字符 dp[i-1][j-1] + 1 }

 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         const int len1 = word1.length();
 5         const int len2 = word2.length();
 6         int dp[len1+1][len2+1];
 7         dp[0][0] = 0;   //初试化
 8         for(int j=1; j<=len2; ++j) dp[0][j] = j;    //不断增加字符
 9         for(int i=1; i<=len1; ++i) dp[i][0] = i;    //不断删除字符
10         for(int i=1; i<=len1; ++i)
11             for(int j=1; j<=len2; ++j)
12                 dp[i][j] = min( dp[i-1][j-1] + (word1[i-1] == word2[j-1] ? 0 : 1), min(dp[i-1][j]+1, dp[i][j-1]+1) );
13         return dp[len1][len2];
14     }
15 };

 

Edit Distance

原文:http://www.cnblogs.com/bugfly/p/3959818.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!