垃圾回收机制
一、什么是垃圾回收机制
垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间
二、为什么要用垃圾回收机制?
程序运行过程中会申请大量的内存空间,而对于一些无用的内存空间如果不及时清理的话会导致内存使用殆尽(内存溢出),导致程序崩溃,因此管理内存是一件重要且繁杂的事情,而python解释器自带的垃圾回收机制把程序员从繁杂的内存管理中解放出来。
三、垃圾回收机制原理
引用计数
引用分为直接引用与间接引用
直接引用指的是从栈区出发直接引用到的内存地址。
间接引用指的是从栈区出发引用到堆区后,再通过进一步引用才能到达的内存地址。
引用计数就是:变量值被变量名关联的次数
age = 18
引用计数增加:
变量值18被关联了一个变量名age,称之为引用计数为1
m = age (把age的内存地址给了m,此时,m,age都关联了18,所以变量值18的引用计数为2)
引用计数减少:
age=10(名字age先与值18解除关联,再与3建立了关联,变量值18的引用计数为1)
del m(del的意思是解除变量名x与变量值18的关联关系,此时,变量18的引用计数为0)
值18的引用计数一旦变为0,其占用的内存地址就应该被解释器的垃圾回收机制回收
标记清除
标记清除是为了用来解决循环引用带来的内存泄露问题
标记/清除算法的做法是当应用程序可用的内存空间被耗尽的时,就会停止整个程序,然后进行两项工作,第一项则是标记,第二项则是清除
分代回收
分代回收的核心思想是:在历经多次扫描的情况下,都没有被回收的变量,gc机制就会认为,该变量是常用变量,gc对其扫描的频率会降低,具体实现原理如下:
分代指的是根据存活时间来为变量划分不同等级(也就是不同的代)
用来降低引用计数的扫描频率,提升垃圾回收的效率
新定义的变量,放到新生代这个等级中,假设每隔1分钟扫描新生代一次,如果发现变量依然被引用,那么该对象的权重(权重本质就是个整数)加一,当变量的权重大于某个设定得值(假设为3),会将它移动到更高一级的青春代,青春代的gc扫描的频率低于新生代(扫描时间间隔更长),假设5分钟扫描青春代一次,这样每次gc需要扫描的变量的总个数就变少了,节省了扫描的总时间,接下来,青春代中的对象,也会以同样的方式被移动到老年代中。也就是等级(代)越高,被垃圾回收机制扫描的频率越低
原文:https://www.cnblogs.com/cgwang/p/12811740.html