首页 > 其他 > 详细

9、主成分分析

时间:2020-05-01 18:01:36      阅读:48      评论:0      收藏:0      [点我收藏+]

一、用自己的话描述出其本身的含义:

1、特征选择

  从多个特征中选择一部分特征作为训练集的特征,特征在选择前后不改变值。

2、PCA

  PCA是特征降维,降维是从一个维度空间映射到另一个维度空间,也就是高维度数据集映射到低维度空间的同时,尽可能的保留的变量。

二、并用自己的话阐述出两者的主要区别

  特征选择:是从所有特征中选择一 部分特征作为训练集特征,没有改变特征原来的形式,特征量减少。

  PCA:是从一个维度空间映射到另一个维度空间,改变了特征原来的形式,特征多少没有改变。

9、主成分分析

原文:https://www.cnblogs.com/ccw1124486193/p/12814066.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!