首页 > 其他 > 详细

9.主成分分析

时间:2020-05-03 15:18:51      阅读:42      评论:0      收藏:0      [点我收藏+]

一、用自己的话描述出其本身的含义:

1、特征选择

通过人工选择特征筛选删除相关系数较低的特征,从而达到降维的作用让模型更加准确。

2、PCA

分析、简化数据集,用特征降维的方法减少特征数降低数据复杂的,减少过度拟合的可能性。

  

二、并用自己的话阐述出两者的主要区别

特征选择后是原来的特征集;PCA选择后特征集会变,特征数量也会变少;PCA选择是机器自动选择的所以可以适用于特征数特别多的时候,特征选择是人工手动的适用于特征数相对来说比较少的时候。

 

9.主成分分析

原文:https://www.cnblogs.com/chenhaowen-shuaishuaide/p/12821757.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!