首页 > 其他 > 详细

李航统计学习方法(第二版)基本概念(五):正则化与交叉验证

时间:2020-05-03 19:21:12      阅读:59      评论:0      收藏:0      [点我收藏+]

正则化与交叉验证用于模型选择

1 正则化

正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty iterm )。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。
比如,正则化项可以是模型参数向量的范数。

正则化一般形式:
技术分享图片

 

 

正则化形式:

 技术分享图片

2 交叉验证

交叉验证的基木想法是重复地使用数据;把给定的数据进行切分,将切分的数据集组合为训练集与测试集,在此基础上反复地进行训练、测试以及模型选择。
2.1 简单交叉验证

技术分享图片

2.2 s折交叉验证

技术分享图片

2.3 留一交叉验证

技术分享图片

 

李航统计学习方法(第二版)基本概念(五):正则化与交叉验证

原文:https://www.cnblogs.com/qiu-hua/p/12822965.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!