1 import tensorflow as tf 2 3 fashion = tf.keras.datasets.fashion_mnist 4 (x_train, y_train), (x_test, y_test) = fashion.load_data() 5 6 print(x_train.shape, y_train.shape) 7 print(x_test.shape, y_test.shape) 8 print(x_train[0]) 9 print(y_train[0]) 10 11 x_train, x_test = x_train/255.0, x_test/255.0 12 13 model = tf.keras.models.Sequential([ 14 tf.keras.layers.Flatten(), 15 tf.keras.layers.Dense(128, activation=‘relu‘), 16 tf.keras.layers.Dense(10, activation=‘softmax‘) 17 ]) 18 19 model.compile(optimizer=‘adam‘, 20 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 21 metrics=[‘sparse_categorical_accuracy‘]) 22 23 model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1) 24 model.summary() 25 26 27 28 29 30 import tensorflow as tf 31 from tensorflow.keras.layers import Flatten, Dense 32 from tensorflow.keras import Model 33 34 fashion = tf.keras.datasets.fashion_mnist 35 (x_train, y_train), (x_test, y_test) = fashion.load_data() 36 x_train, x_test = x_train/255.0, x_test/255.0 37 38 class FashionModel(Model): 39 def __init__(self): 40 super(FashionModel, self).__init__() 41 self.flatten = Flatten() 42 self.d1 = Dense(128, activation=‘relu‘) 43 self.d2 = Dense(10, activation=‘softmax‘) 44 45 def call(self, x): 46 x = self.flatten(x) 47 x = self.d1(x) 48 y = self.d2(x) 49 return y 50 51 52 model = FashionModel() 53 54 model.compile(optimizer = ‘adam‘, 55 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 56 metrics=[‘sparse_categorical_accuracy‘]) 57 58 model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1) 59 model.summary()
第三讲 神经网络八股--Fashion Mnist数据集分类
原文:https://www.cnblogs.com/wbloger/p/12828751.html