# 分组与聚合
import pandas as pd
import numpy as np
# 设置列对齐
pd.set_option("display.unicode.ambiguous_as_wide",True)
pd.set_option("display.unicode.east_asian_width",True)
# 读取工号姓名时段交易额,使用默认索引
dataframe = pd.read_excel(r‘C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx‘,
usecols = [‘工号‘,‘姓名‘,‘时段‘,‘交易额‘,‘柜台‘])
# 对 5 的余数进行分组
dataframe.groupby(by = lambda num:num % 5)[‘交易额‘].sum()
‘‘‘
0 4530
1 5000
2 1980
3 3120
4 2780
Name: 交易额, dtype: int64
‘‘‘
# 查看索引为 7 15 的交易额
dataframe.groupby(by = {7:‘索引为7的行‘,15:‘索引为15的行‘})[‘交易额‘].sum()
‘‘‘
索引为15的行 830
索引为7的行 600
Name: 交易额, dtype: int64
‘‘‘
# 查看不同时段的交易总额
dataframe.groupby(by = ‘时段‘)[‘交易额‘].sum()
‘‘‘
时段
14:00-21:00 8300
9:00-14:00 9110
Name: 交易额, dtype: int64
‘‘‘
# 各柜台的销售总额
dataframe.groupby(by = ‘柜台‘)[‘交易额‘].sum()
‘‘‘
柜台
化妆品 7900
日用品 2600
蔬菜水果 2960
食品 3950
Name: 交易额, dtype: int64
‘‘‘
# 查看每个人在每个时段购买的次数
count = dataframe.groupby(by = ‘姓名‘)[‘时段‘].count()
‘‘‘
姓名
周七 2
张三 4
李四 3
王五 3
赵六 2
钱八 3
Name: 时段, dtype: int64
‘‘‘
#
count.name = ‘交易人和次数‘
‘‘‘
‘‘‘
# 每个人的交易额平均值并排序
dataframe.groupby(by = ‘姓名‘)[‘交易额‘].mean().round(2).sort_values()
‘‘‘
姓名
周七 590.00
钱八 756.67
王五 876.67
赵六 1075.00
张三 1300.00
李四 1326.67
Name: 交易额, dtype: float64
‘‘‘
# 每个人的交易额,apply(int) 转换为整数
dataframe.groupby(by = ‘姓名‘).sum()[‘交易额‘].apply(int)
‘‘‘
姓名
周七 1180
张三 5200
李四 3980
王五 2630
赵六 2150
钱八 2270
Name: 交易额, dtype: int64
‘‘‘
# 每一个员工交易额的中值
data = dataframe.groupby(by = ‘姓名‘).median()
‘‘‘
工号 交易额
姓名
周七 1005 590
张三 1001 1300
李四 1002 1500
王五 1003 830
赵六 1004 1075
钱八 1006 720
‘‘‘
data[‘交易额‘]
‘‘‘
姓名
周七 590
张三 1300
李四 1500
王五 830
赵六 1075
钱八 720
Name: 交易额, dtype: int64
‘‘‘
# 查看交易额对应的排名
data[‘排名‘] = data[‘交易额‘].rank(ascending = False)
data[[‘交易额‘,‘排名‘]]
‘‘‘
交易额 排名
姓名
周七 590 6.0
张三 1300 2.0
李四 1500 1.0
王五 830 4.0
赵六 1075 3.0
钱八 720 5.0
‘‘‘
# 每个人不同时段的交易额
dataframe.groupby(by = [‘姓名‘,‘时段‘])[‘交易额‘].sum()
‘‘‘
姓名 时段
周七 9:00-14:00 1180
张三 14:00-21:00 600
9:00-14:00 4600
李四 14:00-21:00 3300
9:00-14:00 680
王五 14:00-21:00 830
9:00-14:00 1800
赵六 14:00-21:00 2150
钱八 14:00-21:00 1420
9:00-14:00 850
Name: 交易额, dtype: int64
‘‘‘
# 设置各时段累计
dataframe.groupby(by = [‘姓名‘])[‘时段‘,‘交易额‘].aggregate({‘交易额‘:np.sum,‘时段‘:lambda x:‘各时段累计‘})
‘‘‘
交易额 时段
姓名
周七 1180 各时段累计
张三 5200 各时段累计
李四 3980 各时段累计
王五 2630 各时段累计
赵六 2150 各时段累计
钱八 2270 各时段累计
‘‘‘
# 对指定列进行聚合,查看最大,最小,和,平均值,中值
dataframe.groupby(by = ‘姓名‘).agg([‘max‘,‘min‘,‘sum‘,‘mean‘,‘median‘])
‘‘‘
工号 交易额
max min sum mean median max min sum mean median
姓名
周七 1005 1005 2010 1005 1005 600 580 1180 590.000000 590
张三 1001 1001 4004 1001 1001 2000 600 5200 1300.000000 1300
李四 1002 1002 3006 1002 1002 1800 680 3980 1326.666667 1500
王五 1003 1003 3009 1003 1003 1000 800 2630 876.666667 830
赵六 1004 1004 2008 1004 1004 1100 1050 2150 1075.000000 1075
钱八 1006 1006 3018 1006 1006 850 700 2270 756.666667 720
‘‘‘
# 查看部分聚合后的结果
dataframe.groupby(by = ‘姓名‘).agg([‘max‘,‘min‘,‘sum‘,‘mean‘,‘median‘])[‘交易额‘]
‘‘‘
max min sum mean median
姓名
周七 600 580 1180 590.000000 590
张三 2000 600 5200 1300.000000 1300
李四 1800 680 3980 1326.666667 1500
王五 1000 800 2630 876.666667 830
赵六 1100 1050 2150 1075.000000 1075
钱八 850 700 2270 756.666667 720
‘‘‘
2020-05-07
原文:https://www.cnblogs.com/hany-postq473111315/p/12844831.html