from PIL import Image import numpy as np import tensorflow as tf import matplotlib.pyplot as plt model_save_path = "./checkpoint/mnist.ckpt" model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=‘relu‘), tf.keras.layers.Dense(10, activation=‘softmax‘) ]) model.load_weights(model_save_path) preNum = int(input("input the number of test pictures:" )) for i in range(preNum): image_path = input("the path of test picture:") img = Image.open(image_path) image = plt.imread(image_path) plt.set_cmap(‘gray‘) plt.imshow(image) img = img.resize((28, 28), Image.ANTIALIAS) img_arr = np.array(img.convert("L")) for i in range(28): for j in range(28): if img_arr[i][j] < 200: img_arr[i][j] = 255 else: img_arr[i][j] =0 img_arr /= 255.0 x_predict = img_arr[tf.newaxis, ...] result = model.predict(x_predict) pred = tf.argmax(result, axis=1) print(‘\n‘) tf.print(pred) plt.pause(1) plt.close()
原文:https://www.cnblogs.com/wbloger/p/12845713.html