首页 > 其他 > 详细

基于mykernel 2.0编写一个操作系统内核

时间:2020-05-08 22:57:47      阅读:52      评论:0      收藏:0      [点我收藏+]

1.配置mykernel 2.0,熟悉Linux内核的编译;

本机环境:VMware Workstation+虚拟机Ubuntu 18.04.1 LTS amd64

打开Terminal终端,进入桌面,依次运行以下命令:(确保虚拟机已经联网)

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch(可以直接使用群里下好的放在桌面就可以跳过这一步)
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on x86_64_defconfig
make -j$(nproc)
sudo apt install qemu # install QEMU
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

 

就可以看到QEMU窗?输出的内容的代码mymain.c和myinterrupt.c ,当前有?个虚拟的CPU执?C代码的上下?环境,可以看到mymain.c中的代码在不停地执?。同时有?个中断处理程序的上下?环境,周期性地产?的时钟中断信号,能够触发myinterrupt.c中的代码。这样就通过Linux内核代码模拟了?个具有时钟中断和C代码执?环境的硬件平台。(运行结果如下图所示)

技术分享图片

 

 

2.基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

上面第一步已经将环境搭建好了,现在只需要在mymain.c的基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码,就可以完成?个可运?的?OS kernel。

如何实现一个拥有进程切换功能的OS kernel:

1.使用Github中的mymain.c和myinterrupt.c文件内容替换掉mykernel中的mymain.c和myinterrupt.c文件内容。然后通过touch命令新建mypcb.h文件,将Github中mypcb.h文件内容写入新建的mypcb.h文件。

技术分享图片

 

2.通过make指令重新编译文件

技术分享图片

 

 3.然后重新执行命令qemu-system-x86_64 -kernel arch/x86/boot/bzImage

运行结果如下:(我修改了mypcb.h中的进程个数,默认是四个进程)

技术分享图片

由上图可见成功实现了进程切换的功能,进程4运?完?个时间?后,会主动让出CPU,然后切换到进程5继续运行。

 

3.简要分析操作系统内核核心功能及运行工作机制

 首先分析一下mypcb.h文件

#define MAX_TASK_NUM        4       //进程数
#define KERNEL_STACK_SIZE   1024*2  //定义栈的大小
struct Thread { unsigned long ip; unsigned long sp; };
typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE]; struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);

 

结构体Thread :用于存储当前进程中正在执行的线程的ip和sp

结构体PCB:(模拟进程控制块)

pid:进程号

state:进程状态,-1代表阻塞态,0代表可运行态,>0代表暂停状态

stack:进程使用的堆栈

thread:当前正在执行的线程信息(thread.ip和thread.sp)

task_entry:存储进程入口函数地址(本实验中为my_process函数)

next:指向下一个PCB,系统中所有的PCB是以环形链表的形式连接起来的。

 

然后看一下mymain.c文件

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0void my_process(void);
void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); }
int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }

 分析:首先初始化所有进程,定义my_current_task指针指向当前进程,定义全局变量my_need_sched = 0负责进程调度。

void __init my_start_kernel(void)函数是mykernel内核代码的??,负责初始化内核的各个组成部分。在Linux内核源代码中,实际的内核??是init/main.c中的start_kernel(void)函数。

首先pid=0,代表进程号为0的进程,在本实验中就是第一个进程。初始化进程task[0]的所有信息,值得一提的是,task[0]的next指针一开始指向的正是自己。

接下来的for循环用来构建进程环形链表。构建完毕后开始执行第一个进程,关于如何启动第一个进程的,关键代码分析如下:

	asm volatile(
    	"movq %1,%%rsp\n\t" 	/* 将进程原堆栈栈顶的地址存?RSP寄存器 */
    	"pushq %1\n\t" 	        /* 将当前RBP寄存器值压栈 */
    	"pushq %0\n\t" 	       /* 将当前进程的RIP压栈 */
    	"ret\n\t" 	           /* ret命令正好可以让压栈的进程RIP保存到RIP寄存器中 */
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);

 

ret命令执行后,RIP寄存器中就得到了my_process(void)函数的进入地址(task[0].thread.ip),开始执行my_process(void)函数,这样就完成了进程0的启动。

在my_process函数的while循环里面可见,会不断检测全局变量my_need_sched的值,当my_need_sched的值从0变成1的时候,就需要发生进程调度,全局变量my_need_sched重新置为0,执行my_schedule()函数进行进程切换。

 

最后看一下具体的进程切换过程代码myinterrupt.c

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;  	
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;
    if(my_current_task == NULL || my_current_task->next == NULL)
    {
    	return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
    	my_current_task = next; 
    	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
    	/* switch to next process */
    	asm volatile(	
        	"pushq %%rbp\n\t" 	    /* save rbp of prev */
        	"movq %%rsp,%0\n\t" 	/* save rsp of prev */
        	"movq %2,%%rsp\n\t"     /* restore  rsp of next */
        	"movq $1f,%1\n\t"       /* save rip of prev */	
        	"pushq %3\n\t" 
        	"ret\n\t" 	            /* restore  rip of next */
        	"1:\t"                  /* next process start here */
        	"popq %%rbp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 
    }  
    return;	
}

 

分析:首先通过extern申明在mymain.c文件中已经定义过的变量task[MAX_TASK_NUM]、my_current_task和my_need_sched。定义全局变量time_count用来进行时间片计数。

然后我们需要明确myinterrupt.c中的my_timer_handler(void)函数什么时候会执行?

由于cpu(指本实验中我们虚拟的cpu)会周期性地产?的时钟中断信号,能够触发myinterrupt.c中的代码,这个时候my_timer_handler(void)函数就会被调用。

从my_timer_handler(void)函数代码可知,当这个函数每被调用1000次时,会把全局变量my_need_sched的值置为1,这样mymain.c中的my_process()函数就会检测到my_need_sched的值发生变化,从而调用my_schedule()函数进行进程切换。

最后分析my_schedule(void)函数,当检测到下一个进程的state是0(代表可运行)时,就会把my_current_task指针指向下一个进程,打印switch切换信息,然后执行进程切换操作。(关键代码如下)

asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 

 

pushq %%rbp: 保存prev进程(本例中指进程0)当前RBP寄存器的值到堆栈;

movq %%rsp,%0 :保存prev进程(本例中指进程0)当前RSP寄存器的值到prev->thread.sp,这时RSP寄存器指向进程的栈顶地址,实际上就是将prev进程的栈顶地址保存;

movq %2,%%rsp: 将next进程的栈顶地址next->thread.sp放?RSP寄存器,完成了进程0和进程1的堆栈切换。

movq $1f,%1 :保存prev进程当前RIP寄存器值到prev->thread.ip,这?$1f是指标号1。

pushq %3 :把即将执?的next进程的指令地址next->thread.ip?栈,这时的next->thread.ip可能是进程1的起点my_process(void)函数,也可能是$1f(标号1)。第?次被执?从头开始为进程1的起点my_process(void)函数,其余的情况均为$1f(标号1),因为next进程如果之前运?过那么它就?定曾经也作为prev进程被进程切换过。

ret :就是将压?栈中的next->thread.ip放?RIP寄存器,为什么不直接放?RIP寄存器呢?因为程序不能直接使?RIP寄存器,只能通过call、ret等指令间接改变RIP寄存器。

1: 标号1是?个特殊的地址位置,该位置的地址是$1f。

popq %%rbp :将next进程堆栈基地址从堆栈中恢复到RBP寄存器中。

自此,就完成了进程0与进程1的切换,其他两个相邻进程的切换过程也和这个相同。

 

总结:通过本次实验,加深了我对于Linux内核中进程切换的过程理解。对于汇编代码读起来也变得更加得心应手。

 

基于mykernel 2.0编写一个操作系统内核

原文:https://www.cnblogs.com/fengyakk/p/12853211.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!