首页 > 其他 > 详细

总体和样本

时间:2020-05-09 22:51:02      阅读:66      评论:0      收藏:0      [点我收藏+]

一、点估计量

在某些情况下,我们并不知道总体参数的确切数值,只能通过样本估计总体参数。

点估计量就是通过样本对于总体参数的最佳猜测值

例如:总体均值 技术分享图片   总体均值点估计量技术分享图片 

 

二、估计总体均值(样本估计总体)

在已知情况下,样本均值是我们能为总体均值做出的最好估计-样本均值是最有可能被作为总体均值的数值。

样本均值可作为总体均值的点估计量,记为:技术分享图片 = 技术分享图片(样本均值)。

 

三、估计总体方差(样本估计总体)

由于样本比较与总体,数值数量变少,因此,与总体中数值偏离于均值的程度相比,样本中的数值更有可能更加密集在均值周围。

所以,样本数据的方差不是总体方差的最好估计方法,如果用样本方差估计总体方差,估计结果会稍微偏低。

通常,如果样本大小为n,可以用下面算式估计总体方差:

技术分享图片   当需要估计总体方差时,样本数减-1

 

四、估计总体比例(样本估计总体)

如果用技术分享图片代表样本样本比例,则可以用下式估计总体比例:

技术分享图片 , 技术分享图片代表总体比例的点估计量。

 

五、比例的抽样分布(总体估计样本)

总体比例p已知时,需要考虑大小为n的样本,得出所有样本比例的分布,该分布称作为“比例的抽样分布”或者“技术分享图片的分布”。

推导:

条件:总体糖球样本中红色糖球比例为p,样本大小为n。

随机变量X代表样本中红色糖球的数目,X~B(n,p)。红色糖球比例取决于X,即比例可作为另一随机变量X/n记作为技术分享图片

技术分享图片期望:E(技术分享图片) = E(X/n) = E(X)/n, X服从二项分布即E(X)=np,于是E(技术分享图片)=p。

结果符合预期,我们期望样本中比例与总体比例相一致。

技术分享图片方差:Var(技术分享图片) = Var(X/n)=Var(X)/n2=npq/n2=pq/n。

技术分享图片分布:当n越大时,技术分享图片的分布越接近正态分布,通常认为n>30时,技术分享图片符合正态分布,此时技术分享图片 ~ N(p, pq/n)。

应用:可通过技术分享图片的分布计算样本比例至少为某值的概率。

连续性修正:在利用正态分布计算概率时,需要进行连续性修正提高正确率,修正值为 +-1/2n。

比例的抽样分布用处:求出已知总体中取出某个样本比例的概率

 

六、均值的抽样分布(总体估计样本)

当已知总体均值技术分享图片和方差技术分享图片,需要考虑大小为n的样本,得出所有样本均值形成的分布,叫做“均值的抽样分布”,或者技术分享图片的分布。

推导:已知袋装糖球总体,均值技术分享图片和方差技术分享图片,一个包装袋糖球数量用X 表示,每一袋糖球都符合相同分布,用Xi代表随机选择一袋糖球中的糖球数量,均值技术分享图片和方差技术分享图片

取n包糖球作为样本,X1到Xn表示包装袋中糖球数量,技术分享图片表示n袋糖球的容量均值。

技术分享图片期望:E(技术分享图片) = E(X1+X2+...+Xn/n) = 1/n(E(X1)+E(X2)+..+E(Xn)) = 1/n(n技术分享图片) = 技术分享图片

结果样本量为n的均值符合总体均值。

技术分享图片方差:Var(技术分享图片) = Var(X1+X2+...+Xn/n) = 1/n2(n技术分享图片) = 技术分享图片/n

技术分享图片分布

  • X符合正态正态分布X~N(技术分享图片,技术分享图片) 则技术分享图片符合正态分布技术分享图片~N(技术分享图片,技术分享图片/n)
  • n很大时,技术分享图片可以用正态分布近似技术分享图片~N(技术分享图片,技术分享图片/n)(中心极限定理:如果从一个非正态总体X中取出一个样本,且样本很大>30,则技术分享图片的分布近似为正态分布)

应用:均值的抽样分布为我们提供了一种计算样本均值的概率的方法。

 

2020-0509-21:40

 

总体和样本

原文:https://www.cnblogs.com/fuyusheng/p/12860255.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!