首页 > 其他 > 详细

动态规划模版

时间:2020-05-12 12:44:06      阅读:56      评论:0      收藏:0      [点我收藏+]

1.遍历模版

public class Traversing {

    public void print1(int n) {

        System.out.println("按斜对角线从中间向右上打印矩阵");
        for (int j = n; j > 0; j--) {
            for (int i = 0; i < j; i++) {
                System.out.print("(" + i + "," + (n - j + i) + ") ");
            }
            System.out.println();
        }
    }

    public void print2(int n){
        System.out.println("按列递增的自底向上打印");
        for (int j = 0; j < n; j++) {
            for (int i = j; i > -1; i--) {
                System.out.print("(" + i + "," + j + ") ");
            }
            System.out.println();
        }
    }

    public void print3(int n){
        System.out.println("按行递减从左到右打印");
        for (int i = n-1; i >= 0; i--) {
            for (int j = i; j < n; j++) {
                System.out.print("(" + i + "," + j + ") ");

            }
            System.out.println();
        }
    }

    public static void main(String[] args) {

        Traversing traversing = new Traversing();
        System.out.println("都可以处理dp[i][j]由{dp[i+1][j-1](左下),dp[i][j-1](左),dp[i+1][j](下)}三个方向决定");
        traversing.print1(5);
        traversing.print2(5);
        traversing.print3(5);

    }

}

2.典型例题

(1)使用最少硬币数的K钱(O(KN))

  • 状态:dp[i]为i 钱需要最少的硬币数

  • 初始化:dp[0]=0,dp[1...n-1] = INT_MAX

  • 状态转移:利用所有dp[i - coins]的子状态求dp[i]状态,coins是币种集合,其中每个币种都有无限个

  • 结果是dp[n],n钱需要最少的硬币数,当dp[n] = INT_MAX则不可用coins币种集合得到

技术分享图片

 (2)最长递增子序列(动态规划:O(N2),二分查找:O(NlogN))

  • 状态:dp[i]为以nums[i]结尾的最长递增子序列长度,其中i为子序列索引i,nums[i]为子序列索引i位置上的值

  • 初始化:dp[0...n-1] = 1,每个数都以自己结尾至少长度为1

  • 状态转移:利用所有的dp[j],其中j<i并且只有在nums[i] > nums[j]才处理

  • 结果是max{dp[i]},获得dp数组中最大值

技术分享图片

 (3)最长回文子序列长度(动态规划:O(N2) ,存在更优算法)

  • 状态:dp[i][j]为s[i...j]字符串最长会问子序列长度,其中s为需要查找的字符串

  • 初始化:dp[0][0] = dp[1][1] = ... = dp[n-1][n-1] = 1,一个字符本身就是回文串长度为1;当s[i...j]中j<i,则dp[i][j] = 0

  • 状态转移:当s[i]=s[j]时,利用已知s[(i+1)...(j-1)]串中最大长度来扩大s[i...j]最大长度,当s[i] != s[j]时,说明s[i]和s[j]两者最多只有一个存在于s[i...j]的最大回文子序列中得,可利用s[(i+1)...j]和s[i...(j-1)]串中最大长度得到s[i...j]最大长度

  • 结果是s[0...(n-1)]获得从0到n-1的串最长回文子序列长度

技术分享图片

 (4)最小编辑距离(动态规划:O(N2))

  • 状态:dp[i][j]为将s1[0...i]变为s2[0...j]的最小编辑距离(s1串不变(+0),删除一个(+1),插入一个(+1),替换一个(+1),此处字符串下标从1开始,0为空串

  • 初始化:dp[i][0] = i,当s2[0...0] 则将s1[0....i]串删除i次;dp[0][j] = j,当s1[0...0] 则将s1串一直插入字符直到得到s2[0...j],插入j次

  • 状态转移:当s1[i]=s2[j]时,利用已知dp[i-1][j-1]的编辑距离(不变),当s1[i] != s2[j]时,说明需要删除或插入或替换

    • 删除:将s1[0...i]中的s1[i]删除,利用dp[i-1][j]得到dp[i][j] = dp[i-1][j] + 1

    • 插入:将s1[0...i]最后插入s2[j],利用dp[i][j-1]得到dp[i][j] = dp[i][j-1] + 1

    • 替换:将s1[0...i]中的s1[i]替换成s2[j],利用dp[i-1][j-1]得到dp[i][j] = dp[i-1][j-1] + 1

    • 获得到最小的dp[i][j]

  • 结果是dp[len(s1)][len(s2)]

技术分享图片

int minDistance(String s1, String s2) {
    int m = s1.length(), n = s2.length();
    int[][] dp = new int[m + 1][n + 1];
    // base case
    for (int i = 1; i <= m; i++)
        dp[i][0] = i;
    for (int j = 1; j <= n; j++)
        dp[0][j] = j;
    // ?底向上求解
    for (int i = 1; i <= m; i++)
        for (int j = 1; j <= n; j++)
            if (s1.charAt(i-1) == s2.charAt(j-1))
                dp[i][j] = dp[i - 1][j - 1];
            else
                dp[i][j] = min(
                        dp[i - 1][j] + 1,
                        dp[i][j - 1] + 1,
                        dp[i-1][j-1] + 1
                );
    // 储存着整个 s1 和 s2 的最?编辑距离
    return dp[m][n];
} 
int min(int a, int b, int c) {
    return Math.min(a, Math.min(b, c));
}

 

动态规划模版

原文:https://www.cnblogs.com/zhihaospace/p/12875303.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!