首页 > 其他 > 详细

基于mykernel 2.0编写一个操作系统内核

时间:2020-05-12 23:52:00      阅读:101      评论:0      收藏:0      [点我收藏+]

一、实验要求:

1、按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译

2、基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel提供的范例代码

3、简要分析操作系统内核核心功能及运行工作机制

 二、实验步骤:

1、搭建虚拟的x86-64 CPU实验平台mykernel 2.0

1.1、提前下载好linux-5.4.34.tar.xz和mykernel-2.0_for_linux-5.4.34.patch,并放置在空文件夹mykernel中,然后将文件夹在终端打开,依次执行以下命令,编译内核和安装qemu虚拟机:

sudo apt install axel
 axel -n 20
 xz -d linux-5.4.34.tar.xz
 tar -xvf linux-5.4.34.tar
 cd linux-5.4.34
 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
 sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
 make defconfig
 make -j$(nproc)
 sudo apt install qemu
 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

 结果如下:可以看出,qemu窗口出现my_start_kernel在不停的输出,my_timer_handler时钟中断处理程序周期性执行。

技术分享图片

 

1.2、进入linux-5.4.34/mykernel目录下可以看见:mymain.c和myinterrupt.c:

技术分享图片

 

 mymain.c:

技术分享图片

 

myinterrupt.c:

技术分享图片

 

2、基于mykernel 2.0编写一个操作系统内核

 

    2.1、首先编写mypcb.h文件,代码如下:

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);

 2.2、对mymain.c进行修改,这里是mykernel内核代码的入口,负责初始化内核的各个组成部分。

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"             /* push rbp */
        "pushq %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to rip */
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
} 

int i = 0;

void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

 2.3、修改myinterrupt.c:

/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *  Change IA32 to x86-64 arch, 2020/4/26
 *
 *  Copyright (C) 2013, 2020  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;      
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
    }  
    return;    
}

  2.4、重新进行编译,并运行,如下:

make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

 

技术分享图片

3. 简要分析操作系统内核核心功能及运行工作机制

核心代码分析:

asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );  
  1. pushq %%rbp\n\t: 保存前一个进程的rbp值到堆栈
  2. movq %%rsp,%0: 保存前一个进程rsp值到prev->thread.sp,这时rsp寄存器指向进程的栈顶地址,实际上就是将prev进程的栈顶地址保存
  3. movq %2,%%rsp: 为完成进程的切换,将下一个进程栈顶地址next->thread.sp放至RSP寄存器
  4. movq $1f,%1: 保存prev进程当前RIP寄存器值到prev->thread.ip(保存处理及上下文)
  5. pushq %3: 将下一个进程next->thread.ip压栈
  6. ret: 将栈顶的next->thread.ip存至rip寄存器,由于程序不能直接使用rip寄存器,需要分开两步处理

 

 

 

 

 

 

 

基于mykernel 2.0编写一个操作系统内核

原文:https://www.cnblogs.com/snowyaa/p/12879600.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!