首页 > 其他 > 详细

繁忙的都市

时间:2020-05-13 19:42:13      阅读:56      评论:0      收藏:0      [点我收藏+]

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。

城市C的道路是这样分布的:

城市中有 n 个交叉路口,编号是 1~n,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。

这些道路是 双向 的,且把所有的交叉路口直接或间接的连接起来了。

每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。

但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。

2.在满足要求1的情况下,改造的道路尽量少。

3.在满足要求1、2的情况下,改造的那些道路中分值最大值尽量小。

作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式

第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。

接下来 mm 行是对每条道路的描述,每行包含三个整数u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c。

输出格式

两个整数 s,max表示你选出了几条道路,分值最大的那条道路的分值是多少。

数据范围

1≤n≤300
1≤m≤8000
1≤c≤10000

输入样例:

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

输出样例:

3 6

思考

每次二分枚举最大的分值,然后把大于的分值的边删除掉,看剩下的边是否可以作为一棵树把图连通。

代码

#include<bits/stdc++.h>
using namespace std;
const int N=310,M=8010;
int fa[N];
struct eg{
    int u,v,c;
    bool operator<(const eg&b)const {
        return c<b.c;
    }
}e[M];
int n,m;
int Find(int x){
    return fa[x]==x?x:fa[x]=Find(fa[x]);
}
bool check(int Max){
    for(int i=1;i<=n;++i) fa[i]=i;
    for(int i=1;i<=m;++i){
        int u=e[i].u,v=e[i].v,c=e[i].c;
        if(c>Max) continue;
        int fu=Find(u),fv=Find(v);
        if(fu!=fv){
            fa[fu]=fv;
        }
    }
    for(int i=2;i<=n;++i){
        if(Find(i)!=Find(i-1)) return false;
    }
    return true;
}
int main(){
    
    cin>>n>>m;
    for(int i=1;i<=m;++i){
        cin>>e[i].u>>e[i].v>>e[i].c;
    }
    int l=1,r=10000,ans=r;
    while(l<=r){
        int mid=(l+r)/2;
        if(check(mid)){
            r=mid-1;
            ans=mid;
        }
        else l=mid+1;
    }
    cout<<n-1<<" "<<ans;
    return 0;
}

繁忙的都市

原文:https://www.cnblogs.com/jjl0229/p/12883996.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!