首页 > 其他 > 详细

基于mykernel 2.0编写一个操作系统内核

时间:2020-05-13 22:23:40      阅读:48      评论:0      收藏:0      [点我收藏+]

一、实验内容

  1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
  2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel提供的范例代码;
  3. 简要分析操作系统内核核心功能及运行工作机制。

二、实验环境

ubuntu18.04

三、实验步骤

  1. 下载Linux内核并进行配置、运行
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.3.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.3.34.patch
sudo apt install build-essential gcc-multilib
sudo apt install qemu # install QEMU
sudo apt install libncurses5-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on ‘x86_64_defconfig‘
make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

因为从github上下载patch文件一直网络异常,直接从群里拷贝的patch文件。

执行结果如下:
技术分享图片

可以看到是mymain.c和myinterrupt.c里的代码交替执行。
mymain.c代码:

void __init my_start_kernel(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%100000 == 0)
            pr_notice("my_start_kernel here  %d \n",i);

    }
}

myinterrupt.c代码:

void my_timer_handler(void)
{
        pr_notice("\n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<\n\n");
}
  1. 修改mykernel/mymain.c文件
    修改为:
#include "mypcb.h"


tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;


void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\n\t"  /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"          /* push rbp */
        "pushq %0\n\t"          /* push task[pid].thread.ip */
        "ret\n\t"              /* pop task[pid].thread.ip to rip */
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
    );
}

void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }
    }
}
  1. 修改mykernel/myinterrupt.c
    修改为:
#include "mypcb.h"


extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;


/*
 * Called by timer interrupt.
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    }
    time_count ++ ;
    return;
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;


    if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
      return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
      my_current_task = next;
      printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
      /* switch to next process */
      asm volatile(
         "pushq %%rbp\n\t"       /* save rbp of prev */
         "movq %%rsp,%0\n\t"     /* save rsp of prev */
         "movq %2,%%rsp\n\t"     /* restore  rsp of next */
         "movq $1f,%1\n\t"       /* save rip of prev */
         "pushq %3\n\t"
         "ret\n\t"               /* restore  rip of next */
         "1:\t"                  /* next process start here */
         "popq %%rbp\n\t"
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }
    return;
}
  1. 重新编译并执行
make defconfig
make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

结果为:
技术分享图片

实验原理

技术分享图片
线程切换核心代码:

asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
pushq %%rbp\n\t

rbp刚开始指向x1, rsp指向x2,随后将(rsp-8),即(x2-8),并将rbp赋给rsp;

movq %%rsp,%0\n\t

将rsp寄存器的值(x2-8)赋给thread.sp;

movq %2,%%rsp\n\t

将next->thread.sp赋给rsp寄存器里,将原本在rsp指向(x2-8)覆盖,指向y2的位置;

movq $1f,%1\n\t 

保存prev进程当前RIP寄存器值到prev->thread.ip;

pushq %3\n\t

有cpu的rsp已经指向next进程的y2地址,并将rsp指向(y2-8)的位置,将next->thread.ip=$1f;

ret\n\t

pop nex进程的堆栈,即将next->thread.ip=$1f pop;

1:\t

地址是$1f

popq %%rbp\n\t 

原本rbp指向的pre进程的x1变为指向next进程的y1。

参考链接:https://github.com/mengning/mykernel

基于mykernel 2.0编写一个操作系统内核

原文:https://www.cnblogs.com/xuking/p/12885216.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!