首页 > 其他 > 详细

深入理解:行列式因子、不变因子和初等因子

时间:2020-05-15 11:12:08      阅读:263      评论:0      收藏:0      [点我收藏+]

行列式因子,不变因子和初等因子

先对特征矩阵的行列式进行初等变换,(初等变换不改变特征值,不改变行列式因子),化简到足够简单为止

 

第k个行列式因子是方阵所有k阶子式的最大公因式。
不变因子是前后两个行列式因子的商,也是Smith标准形的对角元。
初等因子是把不变因子分解成不同的不可约多项式的幂次的乘积。

 

注意:

k阶子式:类似于伴随矩阵的那个行列式,中间可以去掉n-k行、列剩下的元素组成的行列式

k阶子式的最大公因子:先把所有k阶子式可能的情况列出,然后求出每一个k阶子式的行列式,进行比较,得出最大公因子

最大公因子:对角型行列式可以进行遍历每一个对角线上的元素及其乘方,最后符合条件的几个(元素或元素的乘方)相乘就是最大公因子

初等因子:利用初等因子可以求出特征矩阵的特征值,相同特征值的个数取决于初等因子的幂次

标准型:所有不变因子组成的对角矩阵就是其标准型

相似:不变因子或者标准型相同即可证两矩阵相似,比利用(先求特征值,再求(属于某个特征值的特征矩阵的秩)得到(其线性无关的特征向量的个数),来求相似要方便的多,计算过程能节约很多步)

 

深入理解:行列式因子、不变因子和初等因子

原文:https://www.cnblogs.com/hongdoudou/p/12893551.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!