首页 > 其他 > 详细

pytorch 修改预训练model

时间:2020-05-19 12:18:43      阅读:51      评论:0      收藏:0      [点我收藏+]
    class Net(nn.Module):
        def __init__(self , model):
            super(Net, self).__init__()
            #取掉model的后两层
            self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
            self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
            self.pool_layer = nn.MaxPool2d(32)  
            self.Linear_layer = nn.Linear(2048, 8)
            
        def forward(self, x):
            x = self.resnet_layer(x)
            x = self.transion_layer(x)
            x = self.pool_layer(x)
            x = x.view(x.size(0), -1) 
            x = self.Linear_layer(x) 
            return x


    resnet = models.resnet50(pretrained=True)

    model = Net(resnet)

  

pytorch 修改预训练model

原文:https://www.cnblogs.com/ylHe/p/12916055.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!