首页 > 其他 > 详细

numpy矩阵相加时需注意的一个点

时间:2020-05-22 01:04:39      阅读:77      评论:0      收藏:0      [点我收藏+]

  今天在进行numpy矩阵相加的时候出现了一个小的奇怪的地方,下面我们来看看:

>>>P = np.array([1,2,3,4])
>>>F = np.array([9,8,7,6]).reshape((4,1))
>>>P + F
array([[10, 11, 12, 13],
       [ 9, 10, 11, 12],
       [ 8,  9, 10, 11],
       [ 7,  8,  9, 10]])

  咦,怎么会这样,P和F明明都是一维的向量,怎么相加之后成了4×4的矩阵。其实,这和大名鼎鼎的矩阵计算的广播机制有关。再看下面

>>>P = P.reshape((4,1))
>>>P + F
array([[10],
       [10],
       [10],
       [10]])

  这个时候就符合我们的预期了。

  造成上述两次加法结果不同的原因在于,第一次相加的时候P的形状没有被明确指定,结果相加的时候numpy的广播机制起了作用。一个矩阵加上一个常数,等于矩阵的每一个值都加上这个常数。这就是最常见的广播机制了。上述的第一种情况就是使得矩阵F的每一行分别加上P中不同的值,得到每一行的结果1×4的向量,最终结果也就是4×4了。

numpy矩阵相加时需注意的一个点

原文:https://www.cnblogs.com/chester-cs/p/12934475.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!