分析:假设题目中的两个式子都成立,则由①\(\tan(\alpha+2\beta)=-\sqrt{3}\)得到,
\(\tan(\alpha+2\beta)=\tan2(\cfrac{\alpha}{2}+\beta)=\cfrac{2\tan(\cfrac{\alpha}{2}+\beta)}{1-\tan^2(\cfrac{\alpha}{2}+\beta)}=-\sqrt{3}\);
即\(\sqrt{3}\tan^2(\cfrac{\alpha}{2}+\beta)-2\tan(\cfrac{\alpha}{2}+\beta)-\sqrt{3}=0\),
即\([\tan(\cfrac{\alpha}{2}+\beta)-\sqrt{3}][\sqrt{3}\tan(\cfrac{\alpha}{2}+\beta)+1]=0\),
从而解方程得到,\(\tan(\cfrac{\alpha}{2}+\beta)=\sqrt{3}\)或者\(\tan(\cfrac{\alpha}{2}+\beta)=-\cfrac{\sqrt{3}}{3}\),[1]
由于\(\alpha,\beta\in (0,\cfrac{\pi}{2})\),以及\(\tan\cfrac{\alpha}{2}\tan\beta=2-\sqrt{3}\)可知,
\(\tan\cfrac{\alpha}{2}>0\),\(\tan\beta>0\),故\(\tan\cfrac{\alpha}{2}+\tan\beta>0\),
又由于\(\tan(\cfrac{\alpha}{2}+\beta)=\cfrac{\tan\cfrac{\alpha}{2}+\tan\beta}{1-\tan\cfrac{\alpha}{2}\cdot\tan\beta}\),分子和分母都是正数,
故只能是\(\tan(\cfrac{\alpha}{2}+\beta)=\sqrt{3}\);
由\(\cfrac{\tan\cfrac{\alpha}{2}+\tan\beta}{1-\tan\cfrac{\alpha}{2}\cdot\tan\beta}=\sqrt{3}\)可得,
\(\tan\cfrac{\alpha}{2}+\tan\beta=\sqrt{3}(1-2+\sqrt{3})=3-\sqrt{3}\),
又\(\tan\cfrac{\alpha}{2}\cdot\tan\beta=2-\sqrt{3}\),
逆用韦达定理,则\(\tan\cfrac{\alpha}{2}\)和\(\tan\beta\)是方程\(x^2-(3-\sqrt{3})x+2-\sqrt{3}=0\)的两个根;
由于方程能分解为\([x-(2-\sqrt{3})](x-1)=0\),则方程的两个根为\(x=2-\sqrt{3}\)和\(x=1\);
故\(\left\{\begin{array}{l}{\tan\cfrac{\alpha}{2}=2-\sqrt{3}}\\{\tan\beta=1}\end{array}\right.\) 解得\(\left\{\begin{array}{l}{\alpha=\cfrac{\pi}{6}}\\{\beta=\cfrac{\pi}{4}}\end{array}\right.\)
或者\(\left\{\begin{array}{l}{\tan\cfrac{\alpha}{2}=1}\\{\tan\beta=2-\sqrt{3}}\end{array}\right.\) 解得\(\left\{\begin{array}{l}{\alpha=\cfrac{\pi}{2}}\\{\beta=\cfrac{\pi}{12}}\end{array}\right.\) 舍去;
故存在\(\alpha=\cfrac{\pi}{6}\),\(\beta=\cfrac{\pi}{4}\),使得已知的两个式子同时成立;
\(\sin^245^{\circ}+\cos^275^{\circ}+\sin45^{\circ}\cdot\cos75^{\circ}\);
\(\sin^236^{\circ}+\cos^266^{\circ}+\sin36^{\circ}\cdot\cos66^{\circ}\);
\(\sin^215^{\circ}+\cos^245^{\circ}+\sin15^{\circ}\cdot\cos45^{\circ}\);
\(\sin^2(-15^{\circ})+\cos^215^{\circ}+\sin(-15^{\circ})\cdot\cos15^{\circ}\);
\(\sin^2(-45^{\circ})+\cos^2(-15^{\circ})+\sin(-45^{\circ})\cdot\cos(-15^{\circ})\);
(1).试从上述五个式子中任选一个式子,求出此常数;
\(\sin^245^{\circ}+\cos^275^{\circ}+\sin45^{\circ}\cdot\cos75^{\circ}\);
\(=(\cfrac{\sqrt{2}}{2})^2+(\cfrac{\sqrt{6}-\sqrt{2}}{4})^2+\cfrac{\sqrt{2}}{2}\times\cfrac{\sqrt{6}-\sqrt{2}}{4}=\cfrac{3}{4}\);
(2).根据(1)的结果,将该同学的发现推广为三角恒等式,并证明;
观察上述五个式子中涉及的两个角,可正可负也可零,且两个角相差\(30^{\circ}\),故归纳得到两个角分别为\(\theta\)和\(\theta+30^{\circ}\);
仿照原式,猜想如下:
\(\sin^2\theta+\cos^2(\theta+30^{\circ})+\sin\theta\cdot\cos(\theta+30^{\circ})=\cfrac{3}{4}\);
证明:\(\sin^2\theta+\cos^2(\theta+30^{\circ})+\sin\theta\cdot\cos(\theta+30^{\circ})\)
\(=\)
以下的四步求解是为了排除\(\tan(\cfrac{\alpha}{2}+\beta)=-\cfrac{\sqrt{3}}{3}\)的可能性; ??
原文:https://www.cnblogs.com/wanghai0666/p/12941055.html