首页 > 其他 > 详细

《机器学习基石》笔记(三)(台大林轩田版Lecture3)【待完善】

时间:2020-05-27 22:37:01      阅读:38      评论:0      收藏:0      [点我收藏+]

3.分别从{Y,yn,procol,X}角度对学习算法进行分类

技术分享图片

3.1 根据输出的标签Y可以将学习算法分为二分类,多分类,回归,结构化学习四种类型。

{binary classification;multiclassification;regression;structured learning},其中,二分类

和回归算法最常见。

技术分享图片

3.2 根据输入的标签yn是否已知,已知数量的多少可以将学习算法分为有监督学习,无监督

学习,半监督学习,加强学习。

{supervised learning;unsupercised learning;semi-supervised learning;reinforcement learning}。

技术分享图片

3.3 根据机器对数据的不同读取方式protocol可以将算法分成批处理学习,在线学习,主动学习三种。

{batch learning;on-line learning;active learning}。

protocol数据读取方式有三种,分别是batch,online和active。batch表示机器一次性将数据全部读取,

训练后直接得出一个最好的预测函数g;online表示数据有序列地每次读取一部分(或一个),每次

都会根据读取的数据修正当前的g,迭代结束后得到一个最优的g。(可以类比之前的博客PLA的解释)。

active方式表示机器会有主动地查询数据中数据集的信息。

protocol含义如下图所示:

技术分享图片

三种protocol读取数据的方式如下:

技术分享图片

3.4 输入数据集X的特征形式通常可以分为三种,分别是{concrete feature;raw feature;abstract feature},

concrete feature一般指具体可以量化的特征,比如说一个公司的净收入,收益增长率等;raw feature一般

可以是图像像素点信息,语音信息等;abstract feature一般指没有实际物理意义的特征,比如一个人的名字,

学号,ID等等。

技术分享图片

具体例子如下:帮助理解concrete feature/raw feature/abstract feature

技术分享图片

3.5 Lecture3 小结

技术分享图片

 

参考资料:

1.B站《机器学习基石》林轩田版,https://www.bilibili.com/video/BV1Cx411i7op?p=10

《机器学习基石》笔记(三)(台大林轩田版Lecture3)【待完善】

原文:https://www.cnblogs.com/feynmania/p/12976759.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!