/*
* 当一个任务通过execute(Runnable)提交后,假设当前运行的线程数目 = running_thread_num
*
* 增加工作线程以及放入队列的策略
* ① if running_thread_num < corePoolSize
* 即使其他线程都是idle的,也会创建一个新的线程来处理请求。
* ② else if corePoolSize <= running_thread_num < maximumPoolSize and queue.isNotFull
* 只有当队列满的时候才会创建新的线程,否则加入请求队列
* ③ else if corePoolSize <= running_thread_num < maximumPoolSize and queue.isFull 创建新线程
* ④ reject
*
* 默认情况下,即使是核心线程都是当新的任务抵达的时候才会初始化创建和启动。
* 但是可以通过调用prestartCoreThread和prestartAllCoreThreads来启动核心线程
*
* Keep-alive times
* if running_thread_num > corePoolSize ---> 那么超过核心数目的线程idle时间超过keepAliveTime就会被终止回收。
* 默认情况下,Keep-alive times只适用于回收核心线程数以外的线程,
* 但是如果allowCoreThreadTimeOut参数设置为true,那么核心线程也可以被回收。
*
* 队列策略:
* 1) 同步队列 SynchronousQueue 直接将任务提交给线程,不存储任务,如果没有线程可以执行任务,那么会失败,所以会新建一个线程
* 这种策略需要将maximumPoolSizes设置为MAX,避免任务被reject,还需要注意的就是避免任务的提交速度超过任务的处理速度
* if maximumPoolSize == Integer.MAX_VALUE ---> 那么当队列满的时候,就会一直创建线程来处理请求
*
* 2)无界队列 LinkedBlockingQueue 当没有活跃的线程的时候任务都在队列中等待,不会有超过corePoolSize的线程会被创建
* 任务持续到抵达服务端,抵达的速度超过了处理的速度,适合彼此无关联的任务执行
* if corePoolSize == maximumPoolSize ---> 即创建了固定大小的线程池
*
* 3) 有界队列 ArrayBlockingQueue 避免在使用太大maximumPoolSizes的时候资源被耗尽 ,但是很难给出一个合适的值
* 如何调整队列大小和线程池大小是一个tradeoff
* ① 使用较长的队列和较小的线程池会降低CPU和OS切换上下文的开销,但是吞吐量也会较小
* 如果任务经常阻塞【IO较多】,那么系统其实可以开启更多的线程去做事情
* ② 使用较短的队列通常需要较大的线程池,这样会保持CPU一直在运转,但是也会导致上下文切换的开销过大。
*
* 拒绝策略 —— 当线程池关闭了,或者任务队列满了,线程池也都在忙碌中的时候,就会拒绝任务
* 1) ThreadPoolExecutor.AbortPolicy 默认策略,抛出异常
* 2)ThreadPoolExecutor.CallerRunsPolicy 调用execute的线程执行
* 3)ThreadPoolExecutor.DiscardPolicy 直接丢弃
* 4)ThreadPoolExecutor.DiscardOldestPolicy 丢弃最老的
*/
public class ThreadPoolExecutor extends AbstractExecutorService {
/**
* 线程池的状态和转化流程
* 1)RUNNING:接收新的任务并且处理队列中的任务
* 2)SHUTDOWN:不接受新的任务,但是会处理队列中的剩余任务
* 3)STOP:不接受新的任务,也不处理剩余任务,并且会中断正在处理中的任务
* 4)TIDYING:所有的任务都被终止了,工作线程数为0,将线程池状态转变为TIDYING的线程会执行terminated()
* 5)TERMINATED: terminated()执行结束
*
* RUNNING -> SHUTDOWN -> shutdown(), finalize()
* (RUNNING or SHUTDOWN) -> STOP shutdownNow()
* SHUTDOWN -> TIDYING -> When both queue and pool are empty
* STOP -> TIDYING -> When pool is empty
* TIDYING -> TERMINATED -> When the terminated() hook method has completed
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 29
private static final int COUNT_BITS = Integer.SIZE - 3;
// CAPACITY = 0001 1111 1111 1111 1111 1111 1111 1111
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 运行状态保存在前3位 2^3 = 8
// RUNNING = 1110 0000 0000 0000 0000 0000 0000 0000
private static final int RUNNING = -1 << COUNT_BITS;
// SHUTDOWN = 0000 0000 0000 0000 0000 0000 0000 0000
private static final int SHUTDOWN = 0 << COUNT_BITS;
// STOP = 0010 0000 0000 0000 0000 0000 0000 0000
private static final int STOP = 1 << COUNT_BITS;
// TIDYING = 0100 0000 0000 0000 0000 0000 0000 0000
private static final int TIDYING = 2 << COUNT_BITS;
// TERMINATED = 0110 0000 0000 0000 0000 0000 0000 0000
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// ~CAPACITY = 1110 0000 0000 0000 0000 0000 0000 0000
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 低29位代表当前的worker数目
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
private boolean compareAndIncrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect + 1);
}
private boolean compareAndDecrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect - 1);
}
/**
* Decrements the workerCount field of ctl.
* This is called only on abrupt termination of a thread (see processWorkerExit).
* Other decrements are performed within getTask.
*/
private void decrementWorkerCount() {
do {} while (! compareAndDecrementWorkerCount(ctl.get()));
}
private final BlockingQueue<Runnable> workQueue;
private final ReentrantLock mainLock = new ReentrantLock();
/** 线程集合,只有获取了锁才可以使用 */
private final HashSet<Worker> workers = new HashSet<Worker>();
/** 支持awaitTermination操作的条件 */
private final Condition termination = mainLock.newCondition();
/** 线程池相关统计数据 */
private int largestPoolSize;
private long completedTaskCount;
private volatile ThreadFactory threadFactory;
private volatile RejectedExecutionHandler handler;
/**
* Idle超时时间
* 如果①当前线程数目大于核心线程数目 或者 ② allowCoreThreadTimeOut = true
* 那么看比较线程Idle时间和线程保活时间,如果超过了保活时间,那么就将其回收掉
*/
private volatile long keepAliveTime;
/**
* 核心线程是否可以回收,如果为true的话,是可以回收的,不过有个超时时间,如果超时了,就回收核心线程
*
* 如果该选项为false,核心线程在idle的时候还是存活的
* 如果该选项为true,核心线程使用keepAliveTime作为Idle等待的时间,等待超时了,就回收
*/
private volatile boolean allowCoreThreadTimeOut;
private volatile int corePoolSize;
private volatile int maximumPoolSize;
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
/**
* 工作线程包装类
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/** Worker持有的线程 */
final Thread thread;
/** 初始化的任务,可以为空 */
Runnable firstTask;
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 从线程工厂类获取一个新的线程
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);
}
protected boolean isHeldExclusively() {
return getState() != 0;
}
// 实现AQS的获锁方法
protected boolean tryAcquire(int unused) {
// CAS设置state为1 成功后将同步器的持有线程设置为当前线程
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
// 实现AQS的释放锁方法
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
// 线程非中断状态且可以获取锁,代表空闲,那么可以直接中断
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// ①-① 已经使用了shutdown了
// ①-② !(shutdown了 且 首个任务为空 且 任务队列非空 )
if (rs >= SHUTDOWN &&
// 添加线程执行任务队列中没有处理的任务
// 如果rs > SHUTDOWN, 那么代表线程池已经关闭了,此时是不可以添加线程的
// 如果rs == SHUTDOWN,那么判断是否当前首个任务为空且还有未处理的任务,如果是,那么可以添加线程,否则不可以
! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
// 如果大于最大数目 或者 当前约束的最大线程数,添加工作线程失败
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// CAS尝试增加工作线程数目,如果成功则跳出retry整个块
if (compareAndIncrementWorkerCount(c))
break retry;
// 失败了,会通过ctl判断为什么失败
c = ctl.get(); // Re-read ctl
// ① 如果线程池的状态发生了变化,那么重新尝试下,可能是线程池已经关闭了
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
// ② 否则,可能是workerCount此时已经并发修改了,重试
}
}
// 工作线程是否启动了
boolean workerStarted = false;
// 工作线程是否添加了
boolean workerAdded = false;
Worker w = null;
try {
// 构建一个工作线程,线程来自线程工厂
w = new Worker(firstTask);
final Thread t = w.thread;
// 获取到了工作线程
if (t != null) {
// 上锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 将新启工作线程添加到set中
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 添加成功,开启线程
t.start();
workerStarted = true;
}
}
} finally {
// 如果线程未启动,添加线程失败,回滚掉增加的线程数目
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 回滚添加工作线程
if (w != null)
workers.remove(w);
// 减小工作线程数目
decrementWorkerCount();
tryTerminate();
} finally {
mainLock.unlock();
}
}
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn‘t adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
}
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// ①-① SHUTDOWN < STOP < TIDYING < TERMINATED
// ①-② STOP < TIDYING < TERMINATED 或者任务队列为空
// SHUTDOWN -> shutDown()
// STOP -> shutDownNow()
// 第一种路径:STOP || TIDYING || TERMINATED
// 这里代表已经shutDownNow()了,再去获取任务,直接减少工作线程数目
// 第二种路径:SHUTDOWN || STOP || TIDYING || TERMINATED 且 任务队列为空
// 这里代表shutDown,shutDown()后只有任务队列是空的时候才会需要减少工作线程数目
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
// 减小工作线程数目
decrementWorkerCount();
return null;
}
// 获取当前工作线程数目
int wc = workerCountOf(c);
// Are workers subject to culling?
// 是否要剔除掉工作线程,【工作线程 > 核心线程】线程可以回收
// 允许核心线程超时回收 或者 当前工作线程数 > 核心线程数
// 是否需要判断线程的Idle时间
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// ①-① 工作线程大于当前最大数目 或者 如果需要判断Idle时间且已经超时
// ①-② 当前的工作线程数 > 1 或 者任务队列为空
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
// 减少工作线程数目,返回空
if (compareAndDecrementWorkerCount(c))
return null;
// 这轮没获取到,下一轮再获取
continue;
}
try {
Runnable r = timed ?
// 从队列中获取任务,等待keepAliveTime时间,
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
// 如果无需判断Idle时间,就一直阻塞
workQueue.take();
if (r != null)
return r;
// 等待超时
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
// 获取首个任务,置空
w.firstTask = null;
w.unlock(); // allow interrupts
// 突然结束标志
boolean completedAbruptly = true;
try {
// 如果task不为空,则直接执行task,如果为空,就获取队列中的任务
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted.
// This requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 第一种情况:如果线程池关闭【了】且线程未被中断,那么此时需要中断线程
// 第二种情况:线程池还在运行或者正在关闭,线程已经被中断了【清空了中断标志】,此时其他线程关闭了线程池,因为中断信息被清空了,所以要重新恢复中断标识
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() && runStateAtLeast(ctl.get(), STOP)))
&& !wt.isInterrupted())
// 中断线程
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 获取不到任务,主动回收自己
processWorkerExit(w, completedAbruptly);
}
}
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
// 当前工作线程 < 核心线程数
if (workerCountOf(c) < corePoolSize) {
// 如果添加工作线程成功了,就reture
if (addWorker(command, true))
return;
c = ctl.get();
}
// 如果线程池正在运行,且插入任务成功
if (isRunning(c) && workQueue.offer(command)) {
// 重检查
int recheck = ctl.get();
// 如果非运行状态 --》 移除任务 --》 成功 -》 拒绝任务
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
// 如果线程池中没有线程了,这里为什么使用的约束是最大核心数呢???
addWorker(null, false);
}
// 如果线程池非运行或者任务队列满了,则不以core作为约束了
else if (!addWorker(command, false))
reject(command);
}
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(STOP);
interruptWorkers();
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (;;) {
if (runStateAtLeast(ctl.get(), TERMINATED))
return true;
if (nanos <= 0)
return false;
nanos = termination.awaitNanos(nanos);
}
} finally {
mainLock.unlock();
}
}
/**
* Invokes {@code shutdown} when this executor is no longer
* referenced and it has no threads.
*/
protected void finalize() {
shutdown();
}
/**
* Starts a core thread, causing it to idly wait for work. This
* overrides the default policy of starting core threads only when
* new tasks are executed. This method will return {@code false}
* if all core threads have already been started.
*
* @return {@code true} if a thread was started
*/
public boolean prestartCoreThread() {
return workerCountOf(ctl.get()) < corePoolSize &&
addWorker(null, true);
}
/**
* Same as prestartCoreThread except arranges that at least one
* thread is started even if corePoolSize is 0.
*/
void ensurePrestart() {
int wc = workerCountOf(ctl.get());
if (wc < corePoolSize)
addWorker(null, true);
else if (wc == 0)
addWorker(null, false);
}
/**
* Starts all core threads, causing them to idly wait for work. This
* overrides the default policy of starting core threads only when
* new tasks are executed.
*
* @return the number of threads started
*/
public int prestartAllCoreThreads() {
int n = 0;
while (addWorker(null, true))
++n;
return n;
}
public boolean allowsCoreThreadTimeOut() {
return allowCoreThreadTimeOut;
}
public void allowCoreThreadTimeOut(boolean value) {
if (value && keepAliveTime <= 0)
throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
if (value != allowCoreThreadTimeOut) {
allowCoreThreadTimeOut = value;
if (value)
interruptIdleWorkers();
}
}
interruptIdleWorkers();
}
}
原文:https://www.cnblogs.com/zerodsLearnJava/p/12989884.html