首页 > 其他 > 详细

Spark闭包函数从产生到在executor执行经历了什么?

时间:2020-06-01 19:45:58      阅读:31      评论:0      收藏:0      [点我收藏+]

首先,对RDD相关的操作需要传入闭包函数,如果这个函数需要访问外部定义的变量,就需要满足一定条件(比如必须可被序列化),否则会抛出运行时异常。闭包函数在最终传入到executor执行,需要经历以下步骤:

1.driver通过反射,运行时找到闭包访问的变量,并封装成一个对象,然后序列化该对象

2.将序列化后的对象通过网络传输到worker节点

3.worker节点反序列化闭包对象

4.worker节点的executor执行闭包函数

简而言之,就是要通过网络传递函数、然后执行,期间会经历序列化和反序列化,所以要求被传递的变量必须可以被序列化和反序列化,否则会抛类似Error:Task not serializable: java.io.NotSerializableException when calling function outside closure only on classes not objects这样的异常。即使是本地执行时,也会按照上述的步骤执行,这也是为什么不允许在RDD内部直接操作RDD的原因(SparkContext不支持序列化)。同时,在这些算子闭包内修改外部定义的变量不会被反馈到driver端。

Spark闭包函数从产生到在executor执行经历了什么?

原文:https://www.cnblogs.com/itboys/p/13026763.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!