网址:https://www.luogu.com.cn/problem/P1941
FlappyBird是一款风靡一时的休闲手机游戏。
玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。
如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。
为了简化问题,我们对游戏规则进行了简化和改编:
游戏界面是一个长为 n,高为 m 的二维平面,其中有 k 个管道(忽略管道的宽度)。
小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
小鸟每个单位时间沿横坐标方向右移的距离为 1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度 x,每个单位时间可以点击多次,效果叠加;如果不点击屏幕,小鸟就会下降一定高度 y。小鸟位于横坐标方向不同位置时,上升的高度 x 和下降的高度 y 可能互不相同。
小鸟高度等于 0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。
现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。
第 1 行有 3 个整数 n, m, k,分别表示游戏界面的长度,高度和水管的数量,每两个整数之间用一个空格隔开;
接下来的 n 行,每行 2 个用一个空格隔开的整数 x 和 y,依次表示在横坐标位置 0~n?1 上玩家点击屏幕后,小鸟在下一位置上升的高度 x,以及在这个位置上玩家不点击屏幕时,小鸟在下一位置下降的高度 y。
接下来 k 行,每行 3 个整数 p,l,h 每两个整数之间用一个空格隔开。每行表示一个管道,其中 p 表示管道的横坐标,l 表示此管道缝隙的下边沿高度,h 表示管道缝隙上边沿的高度(输入数据保证 p 各不相同,但不保证按照大小顺序给出)。
共两行。
第一行,包含一个整数,如果可以成功完成游戏,则输出 1,否则输出 0。
第二行,包含一个整数,如果第一行为 1,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。
5 ≤ n ≤ 10000,
5 ≤ m ≤ 1000,
0 ≤ k < n,
0 < X, Y < m,
0 < P < n,
0 ≤ L < H ≤ m,
L+1 < H
10 10 6
3 9
9 9
1 2
1 3
1 2
1 1
2 1
2 1
1 6
2 2
1 2 7
5 1 5
6 3 5
7 5 8
8 7 9
9 1 3
1
6
10 10 4
1 2
3 1
2 2
1 8
1 8
3 2
2 1
2 1
2 2
1 2
1 0 2
6 7 9
9 1 4
3 8 10
0
3
如下图所示,蓝色直线表示小鸟的飞行轨迹,红色直线表示管道。
背包神题。经典的题目。
状态转移方程不难想:dp[i, j] = max{dp[i - 1, j + y[i]], dp[i - 1, j - k * x[i]] + k};代表小鸟当前处在横坐标为i纵坐标为j位置上时的最小操作数。枚举k即可。
考虑到当小鸟飞到顶上的时候,不会死;因而dp[i, m]可能是由dp[i - 1, 1 ~ m] 转移过来的。处理的时候单独转移。
其实能更好。考虑:当状态dp[i, j]是由dp[i - 1, j - 2 * x[i]]转移过来,那么假设dp[i, j - x[i]]是从dp[i - 1, 2 * x[i]]转移过来的,对dp[i , j]的求解其实可以通过dp[i, j - x[i]]完成。
进一步,当dp[i, j]是从dp[i - 1, j - k * x[i]]转移而来,那么,当考虑dp[i, j - x[i]]的时候也会从这儿转移过来。这个转移等价于dp[i, j]从dp[i, j - x[i]]转移过去。
由此,我们给出一个新的方程式:dp[i, j] = max(dp[i - 1, j + y[i]], dp[i, j - x[i]] + 1),对于小鸟飞到顶上的情况,我们进行特殊运算时应当考察以下状态:dp[i / (i - 1), m - x[i] ~ m]即可求解。
事实上,上述的算法还应当注意一个细节。当我们将dp[i, j]用dp[i, j - x[i]]更新时,与此同时,dp[i, j - x[i]]又从dp[i - 1, j - x[i] + y[i]]转移过来,考虑它们本来的定义,会发现这样的转移是有毛病的。压根不会存在同一位置小鸟先下降再上升。
那么,这可以通过求解的顺序解决这种问题。具体细节看代码。
代码如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 10000 + 5, maxm = 2000 + 5, INF = 1061109567;
int n, m, k, x[maxn], y[maxn], L[maxn], H[maxn], dp[maxn][maxm], s[maxn];
int main()
{
scanf("%d %d %d", &n, &m, &k);
for(int i = 1; i <= n; ++ i) scanf("%d %d", &x[i], &y[i]);
for(int i = 1; i <= n; ++ i)
{
L[i] = 1, H[i] = m;
}
int l, h, p;
memset(s, 0, sizeof(s));
for(int i = 0; i < k; ++ i)
{
scanf("%d %d %d", &p, &l, &h);
L[p] = l + 1, H[p] = h - 1;
++ s[p];
}
for(int i = 1; i <= n; ++ i) s[i] += s[i - 1];
memset(dp, 0x3f, sizeof(dp));
for(int i = 1; i <= m; ++ i) dp[0][i] = 0;//预处理的关键!!
for(int i = 1; i <= n; ++ i)
{
for(int j = x[i] + 1; j <= m; ++ j)//先处理点击的情况
{
dp[i][j] = min(dp[i - 1][j - x[i]] + 1, dp[i][j - x[i]] + 1);
}
for(int j = m - x[i] + 1; j <= m; ++ j)//处理当小鸟飞到了顶上的状态
{
dp[i][m] = min(dp[i][m], dp[i][j] + 1);
dp[i][m] = min(dp[i][m], dp[i - 1][j] + 1);
}
for(int j = 1; j <= m - y[i]; ++ j)//后处理降落的情况
{
dp[i][j] = min(dp[i][j], dp[i - 1][j + y[i]]);
}
for(int j = 1; j < L[i]; ++ j) dp[i][j] = INF;//及时排除不合法的状态
for(int j = H[i] + 1; j <= m; ++ j) dp[i][j] = INF;
}
int ans = INF;
for(int i = 1; i <= m; ++ i)
{
ans = min(ans, dp[n][i]);
}
if(ans < INF) printf("1\n%d\n", ans);
else
{
bool valid = false;
int i;
for(i = n - 1; i; -- i)
{
for(int j = 0; j <= m; ++ j)
{
if(dp[i][j] < INF)
{
valid = true;
break;
}
}
if(valid) break;
}
printf("0\n%d\n", s[i]);
}
return 0;
}
原文:https://www.cnblogs.com/zach20040914/p/13045850.html