首页 > 其他 > 详细

NOIP2014提高组 飞扬的小鸟

时间:2020-06-04 21:14:16      阅读:42      评论:0      收藏:0      [点我收藏+]
题目:飞扬的小鸟

网址:https://www.luogu.com.cn/problem/P1941

题目描述

FlappyBird是一款风靡一时的休闲手机游戏。

玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。

如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。

技术分享图片

为了简化问题,我们对游戏规则进行了简化和改编:

游戏界面是一个长为 n,高为 m 的二维平面,其中有 k 个管道(忽略管道的宽度)。

小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。

小鸟每个单位时间沿横坐标方向右移的距离为 1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度 x,每个单位时间可以点击多次,效果叠加;如果不点击屏幕,小鸟就会下降一定高度 y。小鸟位于横坐标方向不同位置时,上升的高度 x 和下降的高度 y 可能互不相同。

小鸟高度等于 0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。

现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。

输入格式

第 1 行有 3 个整数 n, m, k,分别表示游戏界面的长度,高度和水管的数量,每两个整数之间用一个空格隔开;

接下来的 n 行,每行 2 个用一个空格隔开的整数 x 和 y,依次表示在横坐标位置 0~n?1 上玩家点击屏幕后,小鸟在下一位置上升的高度 x,以及在这个位置上玩家不点击屏幕时,小鸟在下一位置下降的高度 y。

接下来 k 行,每行 3 个整数 p,l,h 每两个整数之间用一个空格隔开。每行表示一个管道,其中 p 表示管道的横坐标,l 表示此管道缝隙的下边沿高度,h 表示管道缝隙上边沿的高度(输入数据保证 p 各不相同,但不保证按照大小顺序给出)。

输出格式

共两行。

第一行,包含一个整数,如果可以成功完成游戏,则输出 1,否则输出 0。

第二行,包含一个整数,如果第一行为 1,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。

数据范围

5 ≤ n ≤ 10000,
5 ≤ m ≤ 1000,
0 ≤ k < n,
0 < X, Y < m,
0 < P < n,
0 ≤ L < H ≤ m,
L+1 < H

输入 #1
10 10 6 
3 9  
9 9  
1 2  
1 3  
1 2  
1 1  
2 1  
2 1  
1 6  
2 2  
1 2 7 
5 1 5 
6 3 5 
7 5 8 
8 7 9 
9 1 3 
输出 #1
1
6
输入 #2
10 10 4 
1 2  
3 1  
2 2  
1 8  
1 8  
3 2  
2 1  
2 1  
2 2  
1 2  
1 0 2 
6 7 9 
9 1 4 
3 8 10  
输出 #2
0
3
说明/提示

如下图所示,蓝色直线表示小鸟的飞行轨迹,红色直线表示管道。
技术分享图片

技术分享图片

背包神题。经典的题目。
状态转移方程不难想:dp[i, j] = max{dp[i - 1, j + y[i]], dp[i - 1, j - k * x[i]] + k};代表小鸟当前处在横坐标为i纵坐标为j位置上时的最小操作数。枚举k即可。
考虑到当小鸟飞到顶上的时候,不会死;因而dp[i, m]可能是由dp[i - 1, 1 ~ m] 转移过来的。处理的时候单独转移。

其实能更好。考虑:当状态dp[i, j]是由dp[i - 1, j - 2 * x[i]]转移过来,那么假设dp[i, j - x[i]]是从dp[i - 1, 2 * x[i]]转移过来的,对dp[i , j]的求解其实可以通过dp[i, j - x[i]]完成。

进一步,当dp[i, j]是从dp[i - 1, j - k * x[i]]转移而来,那么,当考虑dp[i, j - x[i]]的时候也会从这儿转移过来。这个转移等价于dp[i, j]从dp[i, j - x[i]]转移过去。

由此,我们给出一个新的方程式:dp[i, j] = max(dp[i - 1, j + y[i]], dp[i, j - x[i]] + 1),对于小鸟飞到顶上的情况,我们进行特殊运算时应当考察以下状态:dp[i / (i - 1), m - x[i] ~ m]即可求解。

事实上,上述的算法还应当注意一个细节。当我们将dp[i, j]用dp[i, j - x[i]]更新时,与此同时,dp[i, j - x[i]]又从dp[i - 1, j - x[i] + y[i]]转移过来,考虑它们本来的定义,会发现这样的转移是有毛病的。压根不会存在同一位置小鸟先下降再上升。

那么,这可以通过求解的顺序解决这种问题。具体细节看代码。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 10000 + 5, maxm = 2000 + 5, INF = 1061109567;
int n, m, k, x[maxn], y[maxn], L[maxn], H[maxn], dp[maxn][maxm], s[maxn];
int main()
{
	scanf("%d %d %d", &n, &m, &k);
	for(int i = 1; i <= n; ++ i) scanf("%d %d", &x[i], &y[i]);
	for(int i = 1; i <= n; ++ i)
	{
		L[i] = 1, H[i] = m;
	}
	int l, h, p;
	memset(s, 0, sizeof(s));
	for(int i = 0; i < k; ++ i)
	{
		scanf("%d %d %d", &p, &l, &h);
		L[p] = l + 1, H[p] = h - 1;
		++ s[p];
	}
	for(int i = 1; i <= n; ++ i) s[i] += s[i - 1];
	
	memset(dp, 0x3f, sizeof(dp));
	for(int i = 1; i <= m; ++ i) dp[0][i] = 0;//预处理的关键!! 
	for(int i = 1; i <= n; ++ i)
	{
		for(int j = x[i] + 1; j <= m; ++ j)//先处理点击的情况 
		{
			dp[i][j] = min(dp[i - 1][j - x[i]] + 1, dp[i][j - x[i]] + 1);
		}
		for(int j = m - x[i] + 1; j <= m; ++ j)//处理当小鸟飞到了顶上的状态 
		{
			dp[i][m] = min(dp[i][m], dp[i][j] + 1);
			dp[i][m] = min(dp[i][m], dp[i - 1][j] + 1);
		}
		for(int j = 1; j <= m - y[i]; ++ j)//后处理降落的情况 
		{
			dp[i][j] = min(dp[i][j], dp[i - 1][j + y[i]]);
		}
		for(int j = 1; j < L[i]; ++ j) dp[i][j] = INF;//及时排除不合法的状态 
		for(int j = H[i] + 1; j <= m; ++ j) dp[i][j] = INF; 
	}
	int ans = INF;
	for(int i = 1; i <= m; ++ i)
	{
		ans = min(ans, dp[n][i]);
	}
	if(ans < INF) printf("1\n%d\n", ans);
	else
	{
		bool valid = false;
		int i;
		for(i = n - 1; i; -- i)
		{
			for(int j = 0; j <= m; ++ j)
			{
				if(dp[i][j] < INF)
				{
					valid = true;
					break;
				}
			}
			if(valid) break;
		}
		printf("0\n%d\n", s[i]);
	}
	return 0;
}

NOIP2014提高组 飞扬的小鸟

原文:https://www.cnblogs.com/zach20040914/p/13045850.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!