首页 > 其他 > 详细

Tarjan缩点

时间:2020-06-05 21:29:19      阅读:37      评论:0      收藏:0      [点我收藏+]

Tarjan缩点

P3387 【模板】缩点

思路

既然时缩点的模板,那么缩点自然少不了了,缩点后我们的到新的有向无环图,然后再利用这个无环图去找一条最大权值的路径,路径和即为答案。

我们改如何选取起点来避免不必要的计算,假设存在一条路径,我们的最大值一定时从起点开始的,所以我们选取所有的缩点以后入度为零的点去bfs,然后不断更新最大路径值。

代码

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c > ‘9‘ || c < ‘0‘) {
        if(c == ‘-‘)    f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N1 = 1e4 + 10, N2 = 1e5 + 10;

int head[N1], to[N2], nex[N2], cnt = 1;
int dfn[N1], low[N1], visit[N1], scc[N1], point[N1], value[N1], n, m, tot, sum;
int x[N2], y[N2];
int stk[N1], top;

int head1[N1], to1[N2], nex1[N2], cnt1 = 1;
int in[N1];

void tarjan(int rt) {
    dfn[rt] = low[rt] = ++tot;
    visit[rt] = 1;
    stk[++top] = rt;
    for(int i = head[rt]; i; i = nex[i]) {
        if(!dfn[to[i]]) {
            tarjan(to[i]);
            low[rt] = min(low[rt], low[to[i]]);
        }
        else if(visit[to[i]]) {
            low[rt] = min(low[rt], dfn[to[i]]);
        }
    }
    if(dfn[rt] == low[rt]) {
        sum++;
        do {
            visit[stk[top]] = 0;
            scc[stk[top]] = sum;
            value[sum] += point[stk[top]];
            top--;
        }while(stk[top + 1] != rt);
    }
}

void add(int x, int y) {
    to[cnt] = y;
    nex[cnt] = head[x];
    head[x] = cnt++;
}

void bfs() {
    queue<pair<int, int>> q;
    for(int i = 1; i <= sum; i++)
        if(in[i] == 0)
            q.push(make_pair(i, value[i]));
    int ans = 0;
    while(!q.empty()) {
        int temp = q.front().first;
        ans = max(ans, q.front().second);
        for(int i = head1[temp]; i; i = nex1[i])
                q.push(make_pair(to1[i], q.front().second + value[to1[i]]));
        q.pop();
    }
    printf("%d\n", ans);
}

int main() {
    // freopen("in.txt", "r", stdin);
    n = read(), m = read();
    for(int i = 1; i <= n; i++)
        point[i] = read();
    for(int i = 1; i <= m; i++) {
        x[i] = read(), y[i] = read();
        add(x[i], y[i]);
    }
    for(int i = 1; i <= n; i++)
        if(!dfn[i])
            tarjan(i);
    for(int i = 1; i <= m; i++)//缩点后重新建边。
        if(scc[x[i]] != scc[y[i]]) {
            in[scc[y[i]]]++;
            to1[cnt1] = scc[y[i]];
            nex1[cnt1] = head1[scc[x[i]]];
            head1[scc[x[i]]] = cnt1++;
        }
    bfs();
    return 0;
}

思路

显然是一道缩点的题目,缩点完后,我们可以知道如果一个强连通分量的出度为零,并且只有一个强连通分量的初读为零,那么缩点后的图一定时联通的,这个时候出度为零的强连通分量重的点的个数就是我们要求的答案。

代码

// #include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <stdlib.h>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>

using namespace std;

typedef long long ll;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c > ‘9‘ || c < ‘0‘) {
        if(c == ‘-‘)    f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N1 = 1e4 + 10, N2 = 5e4 + 10;

int head[N1], to[N2], nex[N2], cnt = 1;
int visit[N1], dfn[N1], low[N1], scc[N1], sz[N1], n, m, tot, sum;
int x[N2], y[N2], out[N1];
int stk[N1], top;


void add(int x, int y) {
    to[cnt] = y;
    nex[cnt] = head[x];
    head[x] = cnt++;
}

void tarjan(int rt) {
    visit[rt] = 1, stk[++top] = rt;
    dfn[rt] = low[rt] = ++tot;
    for(int i = head[rt]; i; i = nex[i]) {
        if(!dfn[to[i]]) {
            tarjan(to[i]);
            low[rt] = min(low[rt], low[to[i]]);
        }
        else if(visit[to[i]])
            low[rt] = min(low[rt], dfn[to[i]]);
    }
    if(dfn[rt] == low[rt]) {
        sum++;
        do {
            scc[stk[top]] = sum;
            sz[sum]++;
            visit[stk[top]] = 0;
            top--;
        }while(rt != stk[top + 1]);
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    while(scanf("%d %d", &n, &m) != EOF) {
        for(int i = 1; i <= n; i++)
            head[i] = visit[i] = sz[i] = out[i] = dfn[i] = 0;
        cnt = 1, tot = sum = top = 0;
        for(int i = 1; i <= m; i++) {
            x[i] = read(), y[i] = read();
            add(x[i], y[i]);
        }
        for(int i = 1; i <= n; i++)
            if(!dfn[i])
                tarjan(i);
        // puts("okkkkk");
        for(int i = 1; i <= m; i++)
            if(scc[x[i]] != scc[y[i]])
                out[scc[x[i]]]++;
        int num = 0, ans = 0;
        for(int i = 1; i <= sum; i++)
            if(out[i] == 0) {
                ans = sz[i];
                num++;
            }
        if(num != 1)    puts("0");
        else    printf("%d\n", ans);
    }
    return 0;
}

Bomb

思路

容易想到爆炸就是一个传递的图,当爆炸形成一个环的时候,明显可以进行缩点操作,所以当我们进行完缩点之后,我们只要统计剩余的点中入度为零的点就行,同时我们需要的花费就是这些点所在的联通分量中的花费最小的点。

代码

#include <bits/stdc++.h>

using namespace std;


typedef long long ll;

ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
        if(c == ‘-‘)    f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N1 = 1e3 + 10, N2 = 1e6 + 10;

int head[N1], to[N2], nex[N2], cnt;
int visit[N1], dfn[N1], low[N1], scc[N1], n, sum, tot;
int stk[N1], in[N1], top;
ll cost[N1];

struct point {
    ll x, y, c, r;
    void input() {
        x = read(), y = read(), r = read(), c = read();
    }
}a[N1];

ll dis(point a, point b) {
    return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}

void add(int x, int y) {
    to[cnt] = y;
    nex[cnt] = head[x];
    head[x] = cnt++;
}

void tarjan(int rt) {
    dfn[rt] = low[rt] = ++tot;
    stk[++top] = rt;
    visit[rt] = 1;
    for(int i = head[rt]; i; i = nex[i]) {
        if(!dfn[to[i]]) {
            tarjan(to[i]);
            low[rt] = min(low[rt], low[to[i]]);
        }
        else if(visit[to[i]])
            low[rt] = min(low[rt], dfn[to[i]]);
    }
    if(dfn[rt] == low[rt]) {
        sum++;
        do {
            scc[stk[top]] = sum;
            cost[sum] = min(cost[sum], a[stk[top]].c);
            visit[top[stk]] = 0;
            top--;
        }while(stk[top + 1] != rt);
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    int t = read();
    for(int cas = 1; cas <= t; cas++) {
        n = read();
        for(int i = 1; i <= n; i++) {
            head[i] = visit[i] = dfn[i] = low[i] = scc[i] = in[i] = 0;
            cost[i] = INF;
            a[i].input();
        }
        tot = sum = top = 0, cnt = 1;
        for(int i = 1; i <= n; i++)
            for(int j = i + 1; j <= n; j++) {
                ll d = dis(a[i], a[j]);
                if(d <= a[i].r * a[i].r)
                    add(i, j);
                if(d <= a[j].r * a[j].r)
                    add(j, i);
            }
        for(int i = 1; i <= n; i++)
            if(!dfn[i])
                tarjan(i);
        for(int i = 1; i <= n; i++)
            for(int j = head[i]; j; j = nex[j])
                if(scc[i] != scc[to[j]])
                    in[scc[to[j]]]++;
        ll ans = 0;
        for(int i = 1; i <= sum; i++)
            if(in[i] == 0)
                ans += cost[i];
        printf("Case #%d: %lld\n", cas, ans);
    }
    return 0;
}

Tarjan缩点

原文:https://www.cnblogs.com/lifehappy/p/13051569.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!