首页 > 其他 > 详细

CF932E

时间:2020-06-06 19:28:16      阅读:50      评论:0      收藏:0      [点我收藏+]

传送门

鱼 强!

\[ans=\sum\limits_{i=1}^{n}\dbinom{n}{i} \]

我们有

\[n^m=\sum\limits_{i=0}^{m}\begin{Bmatrix}m\\i\end{Bmatrix}i!\dbinom{n}{i} \]

得到

\[=\sum\limits_{i=1}^{n}\dbinom{n}{i}\sum\limits_{j=0}^{k}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{i}{j} \]

\[=\sum\limits_{j=0}^{k}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits_{i=1}^{n}\dbinom{n}{i}\dbinom{i}{j} \]

\[=\sum\limits_{j=0}^{k}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits_{i=1}^{n}\dbinom{n}{j}\dbinom{n-j}{i-j} \]

\[=\sum\limits_{j=0}^{k}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{n}{j}\sum\limits_{i=1}^{n}\dbinom{n-j}{i-j} \]

\[=\sum\limits_{j=0}^{k}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{n}{j}2^{n-j} \]

此时可以做到\(O(klogk)\)

用通项公式展开\(\begin{Bmatrix}k\\j\end{Bmatrix}\)得到

\[=\sum\limits_{j=0}^{k}\dbinom{n}{j}2^{n-j}\sum\limits_{i=1}^{j}(-1)^i\dbinom{j}{i}(j-i)^k \]

令第二个求和的\(i\)变为\(j-i\)

\[=\sum\limits_{j=0}^{k}\dbinom{n}{j}2^{n-j}\sum\limits_{i=1}^{j}(-1)^{j-i}\dbinom{j}{i}i^k \]

\[=\sum\limits_{i=1}^{k}i^k\sum\limits_{j=i}^{k}\dbinom{n}{j}\dbinom{j}{i}2^{n-j}(-1)^{j-i} \]

\[=\sum\limits_{i=1}^{k}i^k\sum\limits_{j=i}^{k}\dbinom{n}{i}\dbinom{n-i}{j-i}2^{n-j}(-1)^{j-i} \]

\[=\sum\limits_{i=1}^{k}i^k\dbinom{n}{i}\sum\limits_{j=i}^{k}\dbinom{n-i}{j-i}2^{n-j}(-1)^{j-i} \]

\[=\sum\limits_{i=1}^{k}i^k\dbinom{n}{i}2^{n-i}\sum\limits_{j=i}^{k}\dbinom{n-i}{j-i}(-\frac{1}{2})^{j} \]

\(w=-0.5,f_i\)为后面的和式

容易得到\(f_k=1\),考虑递推

\[f_i-f_{i+1} \]

\[=(\sum\limits_{j=0}^{k-i}\dbinom{n-i}{j}w^j)-(\sum\limits_{j=0}^{k-i-1}\dbinom{n-i-1}{j}w^j) \]

把第一个和式中的\(k-i\)项提出来,其他的并入第二项

\[=\dbinom{n-i}{k-i}w^{k-i}+\sum\limits_{j=0}^{k-i-1}(\dbinom{n-i}{j}-\dbinom{n-i-1}{j})w^j \]

\[=\dbinom{n-i}{k-i}w^{k-i}+\sum\limits_{j=0}^{k-i-1}(\dbinom{n-i-1}{j-1})w^j \]

\(j=j-1\)

\[=\dbinom{n-i}{k-i}w^{k-i}+w\sum\limits_{j=0}^{k-i-2}(\dbinom{n-i-1}{j-1})w^j \]

\[=\dbinom{n-i}{k-i}w^{k-i}+w(f_{i+1}-\dbinom{n-i-1}{k-i-1}w^{k-i-1}) \]

\[=\dbinom{n-i}{k-i}w^{k-i}+wf_{i+1}-\dbinom{n-i-1}{k-i-1}w^{k-i} \]

\[=\dbinom{n-i-1}{k-i}w^{k-i}+wf_{i+1} \]

得到

\[f_i=(w+1)f_i+\dbinom{n-i-1}{k-i}w^{k-i} \]

所以

\[ans=\sum\limits_{i=1}^{k}\dbinom{n}{i}i^k2^{n-i}f_i \]

\(f_i\)可以\(O(k)\)递推了,\(i^k\)是积性函数可以线性筛

CF932E

原文:https://www.cnblogs.com/knife-rose/p/13055962.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!