首页 > 其他 > 详细

关于矩阵乘法结合律的证明

时间:2020-06-06 20:13:31      阅读:73      评论:0      收藏:0      [点我收藏+]

其实很naive...
证明的主要意义在于说明两种运算如有分配律就可以做矩乘

若二元运算 \(\oplus , \otimes\) 分别满足交换律,且有 \(\otimes\)\(\oplus\) 的分配律,即

\[a \otimes ( b \oplus c ) = a \otimes b + a \otimes c = (b \oplus c) \otimes a \]

(事实上如果没有交换律矩阵乘法根本就没有意义)

据此定义矩阵乘法 \(A * B = C\) ,即

\[C_{i,j} = \bigoplus _{k=1}^n A_{i,k} \otimes B_{k,j} \]

\(A,B,C\) 为矩阵,用 \(A_{i,j}\) 表示矩阵 \(A\) 中第 \(i\) 行第 \(j\) 列的元素)

则矩阵乘法具有结合律:

\[(A*B)*C = A*(B*C) \]

证明:

\[\begin{aligned} ( ( A*B ) *C ) _{i,j} &= \bigoplus_{k=1}^{n} (A*B)_{i,k} \otimes C_{k,j} \&= \bigoplus_{k=1}^{n} (\bigoplus_{l=1}^n A_{i,l} \otimes B_{l,k}) \otimes C_{k,j} \&= \bigoplus_{k=1}^{n} \bigoplus_{l=1}^n A_{i,l} \otimes B_{l,k} \otimes C_{k,j} \quad &\text{...分配律} \&= \bigoplus_{l=1}^{n} \bigoplus_{k=1}^n A_{i,l} \otimes B_{l,k} \otimes C_{k,j} \quad &\text{...交换律更换枚举} \&= \bigoplus_{l=1}^{n} A_{i,l} \otimes ( \bigoplus_{k=1}^n B_{l,k} \otimes C_{k,j} ) \quad &\text{...分配律} \&= \bigoplus_{l=1}^{n} A_{i,l} \otimes ({B*C})_{l,j} \&= (A*(B*C))_{i,j} \end{aligned} \]

2020/06/06

关于矩阵乘法结合律的证明

原文:https://www.cnblogs.com/sun123zxy/p/13056179.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!