A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
10
1 2 3 4 5 6 7 8 9 0
6 3 8 1 5 7 9 0 2 4
我们知道二叉搜索树有一个基本的性质,就是他的中序遍历结果就是所有元素从小到大排序的结果。
我们又知道该二叉树是完全二叉树,因此可根据中序遍历和完全二叉树这两个条件完全确定一棵BST。
直接将原数组排序然后从头到尾按照中序遍历建树。
这题需要总结的知识点:
BST中序遍历结果是所有元素从小到大排序的结果。
知道一棵树是完全二叉树且知道中序遍历结果可以唯一确定一棵树。
用数组建树时,数组顺序即时树的层序遍历结果。
1 #include <cstdio> 2 #include <algorithm> 3 using namespace std; 4 5 const int maxn = 1000 + 5; 6 int val[maxn]; 7 8 int tree[maxn << 2]; 9 10 int cnt, n; 11 12 void build(int k) { 13 if(k <= n) { 14 build(k << 1); 15 tree[k] = val[cnt ++]; 16 build(k << 1 | 1); 17 } 18 } 19 20 int main() { 21 scanf("%d", &n); 22 for(int i = 0; i < n; i ++) { 23 scanf("%d", &val[i]); 24 } 25 sort(val, val + n); 26 build(1); 27 for(int i = 1; i <= n; i ++) { 28 if(i != 1) printf(" "); 29 printf("%d", tree[i]); 30 } 31 printf("\n"); 32 return 0; 33 }
1064 Complete Binary Search Tree (30分)(BST和CST的性质)
原文:https://www.cnblogs.com/bianjunting/p/13057762.html