1. 应用K-means算法进行图片压缩
读取一张图片
观察图片文件大小,占内存大小,图片数据结构,线性化
用kmeans对图片像素颜色进行聚类
获取每个像素的颜色类别,每个类别的颜色
压缩图片生成:以聚类中收替代原像素颜色,还原为二维
观察压缩图片的文件大小,占内存大小
from sklearn.datasets import load_sample_image
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np
flower=load_sample_image(‘flower.jpg‘)#原始图片
plt.imshow(flower)
plt.show()
image=flower[::3,::3]#降低原始图片的分辨率
plt.imshow(image)
plt.show()
#利用Kmeans对图片进行压缩
x=image.reshape(-1,3)#改变数组的形状
n_colors=64
model=KMeans(n_colors)
labels=model.fit_predict(x)
colors=model.cluster_centers_
new_image=colors[labels]
new_image=new_image.reshape(image.shape)
plt.imshow(new_image.astype(np.uint8))
plt.show()
import sys
print(sys.getsizeof(flower))
print(sys.getsizeof(new_image))
2. 观察学习与生活中可以用K均值解决的问题。
从数据-模型训练-测试-预测完整地完成一个应用案例。
这个案例会作为课程成果之一,单独进行评分。