首页 > 其他 > 详细

交换机技术分解

时间:2020-06-07 14:37:01      阅读:60      评论:0      收藏:0      [点我收藏+]

交换机技术分解

一. 交换架构的演进介绍(主要以框式)
1. 共享总线
2. 环形交换
3. 共享内存
4. Crossbar+共享内存
5. 分布式Crossbar

1. 共享总线
总线交换是最古老的一种数据交换方式,这种方式的主要特点是没有专门的交换网芯片,通过共享背板总线进行各线卡之间的数据传递,各线卡分时占用背板总线,共享总线不可避免内部冲突;结构和技术比较简单,但交换容量受背板总线带宽限制,无法构建大容量系统,并且随着背板总线带宽的增加,码流的同步控制也成为一大瓶颈;目前采用这种交换方式的系统交换容量一般小于32G,并且一般都是有阻塞的系统。这种交换形式在一些老机型上仍有使用,新的系统不会采用这种交换形式。这种交换形式将逐渐被淘汰。
2. 环形交换
环形交换实质上仍然是一种总线交换方式,改进点就是将总线移到了芯片中,而不是在背板上;
带宽有所提高,但是没有根本改善;采用这种交换方式的系统容量在32G-64G之间,一般来讲都是有阻塞的系统;这种交换形式也将逐渐被淘汰。
3. 共享内存
共享内存结构的交换机使用大量的高速RAM来存储输入数据,同时依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这类交换机设计上比较容易实现,但在交换容量扩展到一定程度时内存操作会产生延迟,另外在这种设计中由于总线互连的问题增加冗余交换引擎相对比较复杂,所以这种交换机如果提供双引擎的话要做到非常稳定相对比较困难。所以我们可以看到早期在市场上推出的网络核心交换机往往都是单引擎,尤其是随着交换机端口的增加,由于需要内存容量更大,速度也更快,中央内存的价格变得很高。交换引擎会成为性能实现的瓶颈。

4. Crossbar(交换矩阵)+共享内存

技术分享图片

 随着网络核心交换机的交换容量从几十个Gbps发展到今天的几百个Gbps,一种称之为CrossBar的交换模式逐渐成为网络核心交换机的首选。CrossBar(即CrossPoint)被称为交叉开关矩阵或纵横式交换矩阵。它能很好的弥补共享内存模式的一些不足。

首先,CrossBar实现相对简单。共享交换架构中的线路卡到交换结构的物理连接简化为点到点连接,实现起来更加方便,从而更加容易保证大容量交换机的稳定性;
其次,CrossBar内部无阻塞(相对的)。一个CrossBar,只要同时闭合多个交叉节点(crosspoint),多个不同的端口就可以同时传输数据。从这个意义上,我们认为所有的CrossBar在内部是无阻塞的,因为它可以支持所有端口同时线速交换数据。另外,由于其简单的实现原理和无阻塞的交换结构使其可以运行在非常高的速率上。半导体厂商目前已经可以用传统CMOS技术制造出10Gbit/s以上速率的点对点串行收发芯片。
基本上2000年以后出现的网络核心交换机基本上都选择了CrossBar结构的ASIC(一种为专门目的而设计的集成电路)芯片作为核心,但由于Crossbar芯片的成本等诸多因素,这时的核心交换设备几乎都选择了共享内存方式来设计业务板,从而降低整机的成本因此,“CrossBar+共享内存”成为比较普遍的核心交换架构。但这种结构下,依然会存在业务板总线和交换网板的Crossbar互连问题。由于业务板总线上的数据都是标准的以太网帧,而一般Crossbar都采用信元交换的模式来体现Crossbar的效率和性能。因此在业务板上采用的共享总线的结构在一定程度上影响Crossbar的效率,整机性能完全受限于交换网板Crossbar的性能。
5. 分布式Crossbar(CLOS)
技术分享图片

 传统的园区网交换机一般采用“Crossbar+共享缓存”的交换架构,引擎板继承担控制平面的工作,同时也承担数据转发平面的工作,跨槽位的流量转发报文需要经背板到引擎板的Crossbar芯片进行转发。这种架构限制了设备的可靠性和性能: 可靠性限制:引擎需要承接数据转发平面的工作,因此在引擎出现主备倒换时必然会出现丢包。此外引擎1+1冗余,也使得Crossbar交换网只能是1+1的冗余,冗余能力无法做的更高。 性能限制:受制于业界当前Crossbar芯片的工艺以及引擎PCB板卡布线等制造工艺,将Crossbar交换网与CPU主控单元集中在一块引擎板上的结构,一般单块引擎的交换容量不可能做的太高(一般约1TB左右)。 数据中心级交换机产品将控制平面与转发平面物理分离,一般有独立的引擎板和交换网板,同时采用CLOS多级交换架构,大大提高设备的可靠性及性能。分布式Crossbar设计中,CPU也采用了分布式设计。设备主控板上的主CPU负责整机控制调度、路由表学习和下发;业务板从CPU主要负责本地查表、业务板状态维护工作。这就实现了分布式路由计算和分布式路由表查询,大大缓解主控板的压力,提高了交换机转发效率,这也是业务板本地转发能够提高效率的重要原因。这种分布式Crossbar、分布式交换的设计理念是核心网络设备设计的发展方向,保证了现在的网络核心能支撑未来海量的数据交换和灵活的多业务支持的需求。

二.核心交换机和普通交换机

核心交换机和普通交换机有何区别?

 技术分享图片

 提起核心交换机与普通交换机有什么区别?相信很多朋友都有点迷惑,今天我们一起来了解下。

核心交换机并不是交换机的一种类型,而是放在核心层(网络主干部分)的交换机叫核心交换机。

一般大型企业网络和网吧需要购买核心交换机来实现强大的网络扩展能力,以保护原有的投资,电脑达到一定数量才会要用上核心交换机,而基本在50台以下无需用核心交换机,有个路由器即可,所谓的核心交换机是针对网络架构而言,如果是个几台电脑的小局域网,一个8口的小交换机就可以称之为核心交换机。

核心交换机的优势

相比较普通交换机而言,数据中心交换机需要具备以下特质:大缓存、高容量、虚拟化、FCOE、二层TRILL技术、可扩展性和模块冗余等方面的特征。

1. 大缓存技术

数据中心交换机改变了传统交换机的出端口缓存方式,采用分布式缓存构架,缓存比普通交换机也大许多,缓存能力可达1G以上,而一般的交换机只能达到2-4m。对于每端口在万兆全线速条件下达到200ms的突发流量缓存能力,从而在突发流量的情况下,大缓存仍能保证网络转发零丢包,正好适应数据中心服务器量大,突发流量大的特点。

2. 高容量设备

数据中心的网络流量具有高密度应用调度、浪涌式突发缓存的特点,而普通交换机以满足互联互通为目的,无法实现对业务精准识别与控制,在大业务情况下无法做到快速响应和零丢包,无法保证业务的连续性,系统的可靠性主要依赖设备的可靠性。

所以普通交换机无法满足数据中心的需要,数据中心交换机需要具备高容量转发特点,数据中西交换机必须支持高密万兆板卡,也就是48口万兆板卡,为使48口万兆板卡能够权限苏转发,数据中心交换机只能采用CLOS分布式交换架构。

除此之外,随着40G和100G的普及,支持8端口40G板卡和4端口的100G板卡也逐渐商用,数据中心交换机40G、100G的板卡早已出现进入市场,从而满足数据中心高密度应用的需求。

3. 虚拟化技术

数据中心的网络设备需要具有高管理性和高安全可靠性的特点,因此数据中心的交换机也需要支持虚拟化,虚拟化就是把物力资源转变为逻辑上可以管理的资源,以打破物理结构之间的壁垒,网络设备的虚拟化包括多虚一,一虚多等技术。

通过虚拟化技术,可以对多台网络设备统一管理,也可以对一台设备上的业务进行完全隔离,从而可以将数据中心管理成本减少40%,将IT利用率提高大约25%。

4. TRILL技术

数据中心在构建二层网络方面,原先的标准是FTP协议,但其固有的缺陷如:STP是通过端口阻止来工作的,所有冗余链路不进行数据转发,造成宽带资源的良妃,STP整网只有一颗生成树,数据报文都要经过根桥中转收才能到达,影响了整网的转发效率。

所以STP将不再适合超大型数据中心的扩展,TRILL正是因为应了STP 的这些缺陷而产生,视为数据中心应用而生的技术,TRILL协议把二层配置和灵活性与三层融合和规模有效结合在一起 ,大二层不需要配置的情况下,就可以实现整网无环路转发。TRILL技术是数据中心交换机二层基本特性,这是普通交换机不具备的。

5. FCOE技术

传统的数据中心往往存在一张数据网和一张存储网络,而新一代的数据中心网络融合趣事越来越明显,FCOE技术的出现使网络融合成为可能,FCOE就是把存储网的数据帧封装在以太网帧内进行转发的技术。实现这一融合技术必然是在数据中心的交换机上,普通交换机一般不具备这些功能。

链路聚合、冗余、堆叠、热备份等这些功能也非常重要,决定了核心交换机在实际应用中的性能、效率、稳定性等。

1)链路聚合

是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。链路聚合一般用来连接一个或多个带宽需求大的设备,例如连接骨干网络的服务器或服务器群。它可以用于扩展链路带宽,提供更高的连接可靠性。

举例:公司有2层楼,分别运行着不同的业务,本来两个楼层的网络是分开的,但都是一家公司难免会有业务往来,这时我们就可以打通两楼之前的网络,使具有相互联系的部门之间高速通信。如下图:

技术分享图片

 如上图所示,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,且SwitchA和SwitchB之间有较大的数据流量。

用户希望SwitchA和SwitchB之间能够提供较大的链路带宽来使相同VLAN间互相通信。同时用户也希望能够提供一定的冗余度,保证数据传输和链路的可靠性。

创建Eth-Trunk接口并加入成员接口,实现增加链路带宽,2台交换机分别配置Eth-Trunk1 分别将需要通信的3条线路的端口加入Eth-Trunk1,设置端口trunk, 允许相应的vlan通过;这样两楼的网络就可以正常通信了。

2)链路冗余

为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的效率、稳定性,这里的备份连接也称为备份链路或者冗余链路。

3)交换机的堆叠

通过专有的堆叠电缆连接起来,可将多台交换机堆叠成一台逻辑交换机。该逻辑交换机中的所有交换机共享相同的配置信息和路由信息。当向逻辑交换机增加和减少单体交换机时不会影响其性能。

叠加的交换机之间通过两条环路连接起来。交换机的硬件负责将数据包在双环路上做负载均衡。环路在这里充当了这个大的逻辑交换机的背板的角色,在双环路都正常工作时,数据包在这台逻辑交换机上的传输率为32Gbps。

当一个数据帧需要传输时,交换机的软件会进行计算看哪条环路更可用,然后数据帧会被送到该环路上。如果一条堆叠电缆出故障,故障两端的交换机都会侦测到该故 障,并将受影响的环路断开,而逻辑交换机仍然可以以单环的状态工作,此时的数据包通过率为16Gbps。交换机的堆叠采用菊花链方式,连接的方式参考下图。

技术分享图片

 堆叠增加交换机端口与带宽的稳定性。

4)热备份(HSRP)

核心交换机是整个网络的核心和心脏,如果核心交换机发生致命性的故障,将导致本地网络的瘫痪,所造成的损失也是难以估计的。所以我们在选择核心交换机时,经常会看到有的核心交换机具有堆叠或热备份等功能。

对核心交换机采用热备份是提高网络可靠性的必然选择。在一个核心交换机完全不能工作的情况下,它的全部功能便被系统中的另一个备份路由器完全接管,直至出现问题的路由器恢复正常,这就是热备份路由协议。

实现HSRP的条件是系统中有多台核心交换机,它们组成一个“热备份组”,这个组形成一个虚拟路由器。在任意时刻,一个组内只有一个路由器是活动的,并由它来转发数据包,如果活动路由器发生了故障,将选择一个备份路由器来替代活动路由器,但是在本网络内的主机看来,虚拟路由器没有改变。所以主机仍然保持连接,没有受到故障的影响,这样就较好地解决了核心交换机切换的问题。

为了减少网络的数据流量,在设置完活动核心交换机和备份核心交换机之后,只有活动核心交换机和备份核心交换机定时发送HSRP报文。如果活动核心交换机失效,备份核心交换机将接管成为活动核心交换机。如果备份核心交换机失效或者变成了活跃核心交换机,将由另外的核心交换机被选为备份核心交换机。

当某台接入层交换机到主核心交换机的线路出现故障,切换至备机,数据流走向。

技术分享图片

 当接入层交换机1上联至核心交换机A的数据链路出现故障,导致接入层交换机1的数据链路切换至核心交换机B,但在切换期间接入层交换机1分丢6个数据包,如上图所示。

 技术分享图片

当服务器与核心交换机A之间主链路出现故障(如线路、网卡等),服务器主网卡切换至备用网卡上时,会丢6个数据包,但当主链路恢复以后,服务器会自动从备用网卡切换至主网卡,而这次切换时数据包不会丢失。

6.核心交换机与普通交换机区别

1)端口的区别

普通交换机端口数量一般为24-48个,网口大部分为千兆以太网或者百兆以太网口,主要功能用于接入用户数据或者汇聚一些接入层的交换机数据,这种交换机最多可以配置Vlan简单路由协议和一些简单的SNMP等功能,背板带宽相对较小。

2)连接或访问网络区别

通常将网络中直接面向用户连接或访问网络的部分称为接入层,将位于接入层和核心层之间的部分称为分布层或汇聚层,接入层目的是允许终端用户连接到网络,因此接入层交换机具有低成本和高端口密度特性。

汇聚层交换机是多台接入层交换机的汇聚点,它必须能够处理来自接入层设备的所有通信量,并提供到核心层的上行链路,因此汇聚层交换机具备更高的性能,更少的接口和更高的交换速率。

而网络主干部分则称为核心层,核心层的主要目的在于通过高速转发通信,提供优化、可靠的骨干传输结构,因此核心层交换机应用有更高的可靠性、性能和吞吐量。

三.盒式交换机和框式交换机

交换机从外形主要分为盒式交换机和框式交换机,盒式交换机和框式交换机内部主要功能部件都一样,只是形态和性能上有很大的区别。

1、盒式交换机
外形如下图:

技术分享图片

 硬件模块逻辑结构如下图:

 技术分享图片

 

  2、框式交换机

外形如下图(每个品牌的布局可能不一样):

 技术分享图片

 四.主控单板、交换网板(数据交换从主控分离出来)、接口单板、背板的介绍

技术分享图片

 主控单板、交换网板、接口单板是华为的名称,其他品牌各有自己的名称,如思科的名称是、管理引擎、交换矩阵、线卡,虽然名称不一样但是都是同类部件,这些概念都是针对框式交换机,即机框+可插拔板卡形式的交换机。

1. 背板:
是机框背部内侧的一块板子,背板是框式交换机用于连接引擎、交换矩阵、线卡、风扇、电源等的PCB板,类似计算机的主板(显卡、声卡等都插入主板),提供插卡的供电、数据、管理、控制平面的各种通道。背板技术每家又大不相同,华为的主控单板、交换网板、接口板都插在同一侧属于平行结构,而思科等交换机品牌最大的特点就是业务线卡和交换矩阵采用了正交硬件架构技术,正交架构最大的特点就是业务线卡和交换矩阵通过背板90°直接连接。相对于传统的无源铜背板技术,正交硬件架构大大缩短了业务线卡与交换矩阵卡之间的高速信号传输距离,为交换机的高速信号稳定传输提供了硬件架构基础。现在的交换机,为了提高背板器件可用性,一般不会在背板上设计芯片,而全部是硬件链路,将器件故障率降低。
2. 主控单板:
提供设备的管理和控制功能以及数据平面的协议处理功能,负责处理各种通信协议;作为用户操作的代理,根据用户的操作指令来管理系统、监视性能,并向用户反馈设备运行情况;对接口板、交换模块、风扇、电源进行监控和维护。
3. 交换网板:
主要是负责跨接口单板卡之间的数据转发交换,负责各接口板之间报文的交换、分发、调度、控制等功能。通常交换单元采用高性能的ASIC芯片,提供线速转发。从接口单板A到接口单板B的数据转发路径是接口单板A->背板->交换网板->背板->接口单板B。交换网板上一般会有一个或者多个交换芯片,交换机芯片通过交换网板内部链路、背板与各个接口单板相连,提供接口单板之间的数据交换。
4. 接口单板:
也称为接口单元或业务处理板,提供业务传输的外部物理接口,完成报文接收和发送。对于分布式系统,承担部分协议处理和交换/路由功能。

 

交换机技术分解

原文:https://www.cnblogs.com/wujianming-110117/p/13060491.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!