首页 > 其他 > 详细

竞争性分析、自组织表

时间:2020-06-07 23:36:03      阅读:56      评论:0      收藏:0      [点我收藏+]

竞争性分析、自组织表

Self-organizing lists

List L of n elems

  • Operation Access(x),costs rank(x) = distace of x from head of L

  • L can be reorder by transposing adjcent elements ,cost = 1

Ex

L - > (12) ->(3)->(50)->(14)->(17)->(4)

------------50----3

------------trans-------cost = 4

------------cost 1------for access

Define Online:

A sequence S of operations is provided one at a time for each operation ,for each op an online algorithm must execute the operation immediately

Off-line

may see all of S in advance

Goal min total cost \(C_A(S)\)

Worst Case analysis

Always access tail elems of L

\(C_A(S)=\Omega(|S|n)\) Worst case

Average case analysis

suppose elem x is accessed with prob P(x)

\(E[C_A(S)]=\sum_{x}P(x)*rank(x)\)

Which is minimized when L sorted in decreasing order with respect to P

Heuristic(启发):Keep account of #times each elem is accessed and maintain lis in order of decreassing count

Practice: "Move - to front" Heuristic

After accessing x move x to head of list,using transposes Cost = 2*rank(x). (Access ,transposes)

Respons well is locality in S

Competitive analysis

Def. \(\alpha\)-competitive

An on-line is \(\alpha\)-competitive

if \(\exists\)const k for any Seq S of ops

\(C_A(S)<=\alpha*C_{OPT}(S)+k\) (Opt is the optimal off-line algorithm,"God‘s alg")

Theorem: MTF is 4-competitive for self-org (Move to front)

Proof:

Let\(L_i\) be MTF‘s list after i-th access
\(L_i^*\)‘ OPT‘s

Let \(C_i\) = MTF cost for i-th op
= 2*rank(\(L_{i-1}(x)\)) if it access x
\(C_i^{ *}\) = OPT‘s cost for i-th op
= $ rank_{ L_{i-1}} (x)+t_i$. if opt forms \(t_i\) transposes

Ddefine potential function \(\phi\) {\(L_i\)}->R by

\(\Phi(L_i)\)=2*|{x,y} , \(x\prec_{L_i}y\) and \(y\prec_{L_i^ * }x\) }|(集合的势就是集合的元素有多少) \(\prec\) 代表优先

? = 2#inversions

Ex:

\(L_i\) -> (E) ->(C)->(A)->(D)->(B)

\(L_i^ *\) ->(C)->(A)->(B)->(D)->(E)

\(\Phi(L_i)\) = 2*|{(E,C),(E,A),(E,D),(E,B),(B,D)}|=10

NOTE:

\(\Phi(L_i)\) >=0\(\forall\)

\(\Phi(L_0)\)=0 if MTF and OPT start with same list

How much does \(\Phi\) change from 1 tranposes

transposes creates or destroy one inversion

\(\Delta\Phi = \pm2\)

What happens when op i access x ?

Define:

A = {\(y\in L{i-1},y \prec _{L_{i-1}}x \ and\ y \prec _{L_{i-1}^ *} x\)}

B = {\(y\in L{i-1},y \prec _{L_{i-1}}x \ and\ y \succ _{L_{i-1}^ *}\)x}

C = {\(y\in L{i-1},y \succ _{L_{i-1}}x \ and\ y \prec _{L_{i-1}^ *}x\)}

D = {\(y\in L{i-1},y \succ _{L_{i-1}}x \ and\ y \succ _{L_{i-1}^ *}x\)}

\(L_{i-1}\)

<---------------------------

|------A\(\cup\) B----------------|x|------C\(\cup\) D--------|

? r = \(rank_{L_{i-1}}(x)\)

$L_{i-1}^ * $

|----A\(\cup\) C---x|---------------------- B\(\cup\) D-------|

? $r^ * $= \(rank_{L_{i-1}^{ * }}(x)\)

we have

r = |A| + |B| + 1

\(r^*\) = |A| + |C| + 1

When MTF moves x to front ,it creates |A| inverstions and destroy |B| inversinos

Each transpose by OPT create <= 1 inversion (\(t_i\) times)

Thus

\(\Phi(L_i)-\Phi(L_{i-1})<=2(|A|-|B|+t_i)\)

Amortized cost

\(\hat{c_i}=c_i+\Phi(L_i)-\Phi(L_{i-1}) \\ <= 2*r + 2(|A|-|B|+t_i)\\ = 2*r+2(|A|-(r-1-|A|)+t_i) \quad since \ r = |A|+|B| + 1 \\ =2*r+4*|A|-2*r+2+3*t_i \\ = 4|A|+2+2t_i\\ <=4*(r^* + t_i) \quad since \ r^* = |A|+|C|+1 >=|A|+1 \\ = c_i^ *\)

Thus \(C_MTF(S) = \sum_{i=1} c_i \\ = \sum_{i=1}\hat{c_i}+\Phi(L_i)-\Phi(L_{i-1}) \\ = \sum_{i=1}4_i c^*+\Phi(L_0)-\Phi(L_S)(=0,>0)\\ <= 4 C_{OPT}(S)\)

If we count transpose that move x to front of L as "free"

modeles splicing(拆分) x in and out of L in constant time and MTF is 2-competitve

What if $L_0\neq L_0^* $ Then. \(\Phi(L_0)\) Might be \(\Theta(n^2)\)C(n-1,2)

Thus

\(C_MTF(S)<= 4 C_{OPT}(S)+\Theta(n^2)\)

is still 4 - comp. since \(n^2\) is constant as the size of S goes to infinity. |S|->∞

竞争性分析、自组织表

原文:https://www.cnblogs.com/shcnee/p/13062626.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!