首页 > 其他 > 详细

预训练的卷积神经网络特征提取及应用

时间:2020-06-18 11:45:42      阅读:72      评论:0      收藏:0      [点我收藏+]

使用keras上的VGG16模型对ImageNet的训练结果进行特征提取,并在猫狗分类中应用,同时进行了数据增强。代码如下:

from keras import models
from keras import layers
from keras import optimizers
from keras.applications import VGG16
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt


conv_base = VGG16(weights=imagenet,
                  include_top=False,
                  input_shape=(150, 150, 3))
#建立模型 model
= models.Sequential() model.add(conv_base) model.add(layers.Flatten()) model.add(layers.Dense(256, activation=relu)) model.add(layers.Dense(1, activation=sigmoid)) print(model.summary()) print(len(model.trainable_weights))
#冻结卷积基 conv_base.trainable
= False print(len(model.trainable_weights)) #猫狗图片集,训练集2000张,验证和测试集各1000张 train_dir = ./datasets/train/ validation_dir = ./datasets/validation test_dir = ./datasets/test
#数据增强
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode=nearest
)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
    train_dir,
    target_size=(150,150),
    batch_size=20,
    class_mode=binary
)
validation_generator = test_datagen.flow_from_directory(
    validation_dir,
    target_size=(150,150),
    batch_size=20,
    class_mode=binary
)

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
              loss=binary_crossentropy,
              metrics=[acc])
history = model.fit_generator(
    train_generator,steps_per_epoch=100,
    epochs=30,
    validation_data=validation_generator,
    validation_steps=50
)
model.save(cat_and_dog_pre_train_gpu.h5)
acc = history.history[acc]
val_acc = history.history[val_acc]
loss = history.history[loss]
val_loss = history.history[val_loss]

epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, bo, label=Traing acc)
plt.plot(epochs, val_acc, b, label=Validation acc)
plt.title(Training and validation accuracy)
plt.legend()
plt.figure()

plt.plot(epochs, loss, bo, label=Traing loss)
plt.plot(epochs, val_loss, b, label=Validation loss)
plt.title(Training and validation loss)
plt.legend()
plt.show()

 

预训练的卷积神经网络特征提取及应用

原文:https://www.cnblogs.com/andy2020/p/13156531.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!