首页 > 其他 > 详细

keras使用回调函数 Tesorboard可视化

时间:2020-06-19 09:31:01      阅读:86      评论:0      收藏:0      [点我收藏+]

首先创建log的目录my_dir,在cmd下执行 tensorboard --logdir=my_dir,对模型进行训练,同时打开浏览器,输入 localhost:6006 ,就可以看到模型训练过程的一些实时信息。

代码如下:

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 2000
max_len = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)
model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name=embed))
model.add(layers.Conv1D(32, 7, activation=relu))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation=relu))
model.add(layers.GlobalMaxPool1D())
model.add(layers.Dense(1))
print(model.summary())
model.compile(optimizer=rmsprop,
              loss=binary_crossentropy,
              metrics=[acc])
tcallbacks = [
        keras.callbacks.TensorBoard(
            log_dir=./logs_dir,
            histogram_freq=1,
            embeddings_freq=1,
            embeddings_data=x_train[:1000].astype("float32")
        )
]
history = model.fit(
        x_train, y_train,
        epochs=20,
        batch_size=128,
        validation_split=0.2,
        callbacks=tcallbacks
)

tensorboard界面展示如下:

技术分享图片

 

keras使用回调函数 Tesorboard可视化

原文:https://www.cnblogs.com/andy2020/p/13161185.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!