ClassifyNB.py:
def classify(features_train, labels_train): ### import the sklearn module for GaussianNB from sklearn.naive_bayes import GaussianNB ### create classifier clf = GaussianNB() ### fit the classifier on the training features and labels clf.fit(features_train, labels_train) ### return the fit classifier return clf
prep_terrain_data.py
#!/usr/bin/python import random def makeTerrainData(n_points=1000): ############################################################################### ### make the toy dataset random.seed(42) grade = [random.random() for ii in range(0,n_points)] bumpy = [random.random() for ii in range(0,n_points)] error = [random.random() for ii in range(0,n_points)] y = [round(grade[ii]*bumpy[ii]+0.3+0.1*error[ii]) for ii in range(0,n_points)] for ii in range(0, len(y)): if grade[ii]>0.8 or bumpy[ii]>0.8: y[ii] = 1.0 ### split into train/test sets X = [[gg, ss] for gg, ss in zip(grade, bumpy)] split = int(0.75*n_points) X_train = X[0:split] X_test = X[split:] y_train = y[0:split] y_test = y[split:] grade_sig = [X_train[ii][0] for ii in range(0, len(X_train)) if y_train[ii]==0] bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train)) if y_train[ii]==0] grade_bkg = [X_train[ii][0] for ii in range(0, len(X_train)) if y_train[ii]==1] bumpy_bkg = [X_train[ii][1] for ii in range(0, len(X_train)) if y_train[ii]==1] # training_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig} # , "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}} grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0] bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0] grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1] bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1] test_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig} , "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}} return X_train, y_train, X_test, y_test # return training_data, test_data
class_vis.py
#!/usr/bin/python #from udacityplots import * import warnings warnings.filterwarnings("ignore") import matplotlib matplotlib.use(‘agg‘) import matplotlib.pyplot as plt import pylab as pl import numpy as np #import numpy as np #import matplotlib.pyplot as plt #plt.ioff() def prettyPicture(clf, X_test, y_test): x_min = 0.0; x_max = 1.0 y_min = 0.0; y_max = 1.0 # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. h = .01 # step size in the mesh xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic) # Plot also the test points grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0] bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0] grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1] bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1] plt.scatter(grade_sig, bumpy_sig, color = "b", label="fast") plt.scatter(grade_bkg, bumpy_bkg, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") plt.savefig("test.png") import base64 import json import subprocess def output_image(name, format, bytes): image_start = "BEGIN_IMAGE_f9825uweof8jw9fj4r8" image_end = "END_IMAGE_0238jfw08fjsiufhw8frs" data = {} data[‘name‘] = name data[‘format‘] = format data[‘bytes‘] = base64.encodestring(bytes) print image_start+json.dumps(data)+image_end
studentMain.py
#!/usr/bin/python """ Complete the code in ClassifyNB.py with the sklearn Naive Bayes classifier to classify the terrain data. The objective of this exercise is to recreate the decision boundary found in the lesson video, and make a plot that visually shows the decision boundary """ from prep_terrain_data import makeTerrainData from class_vis import prettyPicture, output_image from ClassifyNB import classify import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" points mixed ### in together--separate them so we can give them different colors in the scatterplot, ### and visually identify them grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] # You will need to complete this function imported from the ClassifyNB script. # Be sure to change to that code tab to complete this quiz. clf = classify(features_train, labels_train) ### draw the decision boundary with the text points overlaid prettyPicture(clf, features_test, labels_test) output_image("test.png", "png", open("test.png", "rb").read())
def NBAccuracy(features_train, labels_train, features_test, labels_test): from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(features_train, labels_train) pred = clf.predict(features_test) accuracy = clf.score(features_test, labels_test) return accuracy
[ML L2 - N19] Naive Bayes GaussianNB
原文:https://www.cnblogs.com/Answer1215/p/13170551.html