首页 > 编程语言 > 详细

Python机器学习(七十二)Keras 导入库与模块

时间:2020-06-21 21:28:37      阅读:119      评论:0      收藏:0      [点我收藏+]

让我们从导入numpy开始,并为计算机的伪随机数生成器设置一个种子,相同种子可以产生同系列的随机数。

import numpy as np
np.random.seed(123)  # 种子相同,随机数产生可以重现

接下来,将从Keras导入Sequential模型类型。这是一个简单的线性神经网络层的栈,它非常适合本教程将构建的前馈CNN(卷积神经网络)类型。

from keras.models import Sequential

接下来,将从Keras导入核心层,这些层是在任何神经网络中都要使用的层:

from keras.layers import Dense, Dropout, Activation, Flatten

然后,将从Keras导入CNN层,这些卷积层将帮助我们有效地训练图像数据:

from keras.layers import Convolution2D, MaxPooling2D

导入一些实用程序,用于转换数据:

from keras.utils import np_utils

导入backend,获取底层实现库的信息,例如可以获取支持的图像格式:

from keras import backend as K

现在,构建神经网络需要的模块和库都导入了。

Python机器学习(七十二)Keras 导入库与模块

原文:https://www.cnblogs.com/huanghanyu/p/13173898.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!