工作和生活中存在大量的具有相关性的事件,当找到不同变量之间的关系,我们就会用到回归分析。回归分析(Regression Analysis):是用来确定2个或2个以上变量间关系的一种统计分析方法。
在回归分析中,变量有2类:因变量 和 自变量。
回归分析研究的主要步骤:
假设X和Y的关系是线性,可以用公式表式为:Y = a + b * X + c
对于上面的公式,称函数f(X) = a + b * X 为一元线性回归函数,a为回归常数,b为回归系数,统称回归参数。X 为回归自变量或回归因子,Y 为回归因变量或响应变量。
实例
牙膏销售的实例:数据结构及示例化如下
分析: 对于大多数顾客来说,在购买同类牙膏时,更多的会关心不同品牌之间的价格差,而不是它们的价格本身。因此,在研究各个因素对销售量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。
在计算过程中并不一定要知道Y和X是否有线性相关的关系。如果不存相关关系,那么回归方程就没有任何意义了,如果Y和X是有相关关系的,即Y会随着X的变化而线性变化。所以,我们需要用假设检验的方法,来验证相关性的有效性。
通常会采用三种显著性检验的方法:
回归模型拟合数据
当两个变量之间存在非常强烈的相互依赖关系的时候,我们就可以说两个变量之间的存在高度相关性。若两组的值一起增大,我们称之为正相关,若一组的值增大时,另一组的值减小,我们称之为负相关。
在使用回归模型拟合数据之前,我们先来观察自变量与因变量之间是如何相关的,我们求出除周期这一列外,其它各列的相关系数矩阵
观察发现sales销售量列的相关系数绝对值越大,相关性越强。注:R中cor函数来计算相关性也是有局限的,它不能计算非线性模型。
基本模型
利用散点图观察销售量与价格差和广告费用的关系
library(ggplot2)
mytable <- read.csv("price.csv")
gplot(mytable,aes(x=mytable$DifPrice,y=mytable$sales))+geom_point()+labs(x="价格差",y="销售量")+geom_smooth(se=F)+theme_bw()
ggplot(mytable,aes(x=mytable$price,y=mytable$sales))+geom_point()+labs(x="价格",y="销售量")+geom_smooth(se=F)+theme_bw()
ggplot(mytable,aes(x=mytable$Invest,y=mytable$sales))+geom_point()+labs(x="广告费",y="销售量")+geom_smooth(se=F)+theme_bw()
如上图可以发现随着价格差(x1)的增加,销售量(y)有比较明显的线型增长趋势;随着广告费用的增加,销售量有向上弯曲增加的趋势;
模型求解
模型改进
从如上的散点图可以看出,随着广告投入增加,销售量有向上弯曲增加的趋势。这里我们将广告投入的自变量换为二阶项来。则将销售量模型改为:
用lm函数拟合以上模型特征:
此时,我们发现,模型残差的标准差Residual standard error有所下降,相关系数的平方Multiple R-squared有所上升,这说明模型修正的是合理的。但同时也出现了一个问题,就是对于β2的P-值>0.05。
在做进一步的修正,考虑X1和X2交互作用,及模型为:
模型通过T检验和F检验,并且Residual standard error减少,Multiple R-squared增加。因此,最终模型选为:
标准化
参考
原文:https://www.cnblogs.com/tgzhu/p/13163219.html